Algebra Qualifying Exam, Spring 2011 Murad Özaydin

All rings are associative with 1 and all modules are unital left modules.

- 1. Prove or disprove:
 - a. If H is a normal subgroup of G and K is a normal subgroup of H then K is normal in G.
 - b. If a group G has a subgroup of finite index then G has a normal subgroup of finite index.
 - c. A finite *p*-group has a nontrivial center.
- 2. Show that there are no simple groups of order 48 or 120.
- 3. If the positive integer k divides the order of a finite nilpotent group G then prove that G has a normal subgroup of order k.
- 4. Show that the matrix ring $M_n(\mathbb{D})$ is simple when \mathbb{D} is a division ring.
- 5. If \mathbb{F} is a field of characteristic p and G is a finite p-group then show that the radical $J(\mathbb{F}G)$ of the group algebra $\mathbb{F}G$ is a maximal ideal of $\mathbb{F}G$.
- 6. Prove that if I and J are ideals of the commutative ring R with I + J = R then R/IJ is isomorphic to $R/I \times R/J$.
- 7. Give examples of finite Galois extensions \mathbb{K} of the field of rational numbers \mathbb{Q} so that $\operatorname{Gal}(\mathbb{K}/\mathbb{Q})$ is isomorphic to:
 - a. The dihedral group of order 8.
 - b. An elementary abelian 2-group of arbitrary rank.
 - c. Any cyclic group of prime order.
- 8. If \mathbb{K} is the splitting field in \mathbb{C} of $x^p 2$ over \mathbb{Q} with p prime then show that $\operatorname{Gal}(\mathbb{K}/\mathbb{Q})$ is isomorphic to the semidirect product $\mathbb{Z}/p\mathbb{Z} \rtimes (\mathbb{Z}/p\mathbb{Z})^{\times}$.
- 9. Prove that for positive integers m < n: if $q^m 1$ divides $q^n 1$ for some prime power q then $k^m 1$ divides $k^n 1$ for every integer k.