Topology Qualifying Review Exam August 20, 2010

Name:

• Prove all the statements unless specified otherwise.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

1. Write definitions. Do as the example.

Example: quotient topology

Answer: Let X be a topological space, Y be a set, and $q: X \to Y$ be a map. The strongest topology \mathcal{T} on Y that makes q continuous is called the quotient topology on Y for the map q. In fact, \mathcal{T} is constructed as follows: For $V \subset Y$, $V \in \mathcal{T}$ if and only if $q^{-1}(V)$ is open in X.

- (1) partition of unity on X dominated by an open covering \mathcal{U}
- (2) uniform metric on Y^X
- (3) compact-open topology
- (4) f is homotopic to g relative to A
- (5) Let X, Y be a spaces; $A \subset X$; $f : A \to Y$ a map. The space Z is obtained by attaching X to Y along A via f. Explain the set and topology of Z.

2. Consider the product space $X \times Y$, where Y is compact. Let N be an open set of $X \times Y$ containing the slice $x_0 \times Y$, then there exists a "tube" $W \times Y$ such that W is an open subset of X and $x_0 \times Y \subset W \times Y \subset N$.

3. Let D be the closed unit disk embedded in \mathbb{R}^2 (as a subspace). Identify all the boundary points of D to a single point in order to form a quotient set Q. Endow Q with the quotient topology. Prove that Q is homeomorphic to the standard 2-sphere S^2 (embedded in \mathbb{R}^3 as a subspace).

4. Let X be the product space $X = \prod_{\alpha \in J} X_{\alpha}$; $\pi_{\alpha} : X \to X_{\alpha}$ the projection. Let $\{\mathbf{x}_n : n \in \mathbb{Z}^+\}$ be a sequence of points in X. Prove: $\{\mathbf{x}_n\} \to \mathbf{x}$ if and only if $\{\pi_{\alpha}(\mathbf{x}_n)\} \to \pi_{\alpha}(\mathbf{x})$ for each $\alpha \in J$. **5**. Let X be a paracompact Hausdorff space; let $\mathcal{U} = \{U_{\alpha} : \alpha \in J\}$ be an indexed open covering of X. Prove that there exists a prtition of unity on X dominated by \mathcal{U} . [You may assume that \mathcal{U} has a precise refinement covering $\mathcal{V} = \{V_{\alpha} : \alpha \in J\}$ such that $\bar{V}_{\alpha} \subset U_{\alpha}$ for each $\alpha \in J$ by paracompactness].

6. Let X be a locally compact Hausdorff space; let the space of continuous functions $\mathcal{C}(X,Y)$ have the compact-open topology. Prove the "evaluation map"

$e: X \times \mathcal{C}(X,Y) \to Y$

defined by e(x, f) = f(x) is continuous. Emphasize where the conditions for X are used.

7. Let $\mathbb{R}^* = \mathbb{R} - \{0\}$, the multiplicative group. It acts on $X = \mathbb{R}^3 - \{0\}$ by scalar multiplication. More precisely, for $\alpha \in \mathbb{R}^*$ and $\mathbf{x} \in X$,

$\alpha\cdot\mathbf{x}=\alpha\mathbf{x}$

7A. Prove that this gives an *action* of \mathbb{R}^* on X.

7B. Find the *stabilizer* (= isotropy subgroup) of this action at n = (0, 0, 1).

7C. What is the orbit space $\mathbb{R}^* \setminus X$?

8. Let *B* a be connected, path-connected, locally path-connected and semilocally simply connected topological space. Let $b_0 \in B$. Given a subgroup *H* of $\pi_1(B, b_0)$, construct a covering space $p : (E, e_0) \to (B, b_0)$ such that $p_*(\pi_1(E, e_0)) = H$.

[Write all the construction. Sketch necessary facts without excessive details].

9. Let $p: (\hat{X}, \hat{x}_0) \to (X, x_0)$ be a covering map. Prove that the deck transformation group is isomorphic to $N_{\pi_1(X, x_0)} \left(p_*(\pi_1(\hat{X}, \hat{x}_0)) \right)$, the normalizer of $p_*(\pi_1(\hat{X}, \hat{x}_0))$ in $\pi_1(X, x_0)$.

10. Use the van Kampen theorem to calculate the fundamental group of the connected sum T # K, where T is a torus, and K is a Klein bottle.