Topology Qualifying Review Exam May 17, 2010

Name:

• Prove all the statements unless specified otherwise.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	

1. Write definitions. Do as the example.

Example: quotient topology

Answer: Let X be a topological space, Y be a set, and $q: X \to Y$ be a map. The strongest topology \mathcal{T} on Y that makes q continuous is called the quotient topology on Y for the map q. In fact, \mathcal{T} is constructed as follows: For $V \subset Y$, $V \in \mathcal{T}$ if and only if $q^{-1}(V)$ is open in X.

- (1) product topology on $\Pi_{\alpha \in \Lambda} X_{\alpha}$
- (2) locally finite family
- (3) Stone-Čech compactification
- (4) homotopic realative to a subset
- (5) deformation retract

2. Let \mathbb{R}_{ℓ} denote \mathbb{R} with the lower-limit topology (i.e., $\{[a, b) : a, b \in \mathbb{R}\}$ is a subbasis). Prove/disprove

- 2A. $[0,1] \subset \mathbb{R}_{\ell}$ is compact.
- 2B. \mathbb{R}_{ℓ} is metrizable.

3. 3A. Let $p: X \to Y$ be a quotient map. Let $f: X \to Z$ be a map that is constant on each set $p^{-1}(\{y\})$ for each $y \in Y$ (so that f induces a map $\overline{f}: Y \to Z$ such that $\overline{f} \circ p = f$). Prove that if f is continuous, then \overline{f} is continuous.

3B. Let $f : S^1(=\partial B^2) \longrightarrow Y$ be a map which is null-homotopic. Prove that f can be extended to a map $g : B^2 \to Y$.

4. Let $f_n : X \to Y$ be a sequence of a continuous functions from the topological space X to a metric space Y. If $\{f_n | n \in \mathbb{Z}^+\}$ converges uniformly to f, then f is continuous.

5. Let X be a normal space; A and B be disjoint closed subsets of X. Construct a continuous function $f: X \to [0,1] \subset \mathbb{R}$ such that f(a) = 0 for all $a \in A$ and f(b) = 1 for all $b \in B$. [You can skip that your f is continuous. Just a construction is required.]

6. Let X be a locally compact Hausdorff space; let the space of continuous functions $\mathcal{C}(X, Y)$ have the compact-open topology. Prove the "evaluation map"

$$e: X \times \mathcal{C}(X, Y) \to Y$$

defined by e(x, f) = f(x) is continuous. Emphasize where the conditions for X are used.

7. Let $\mathbb{H} = \{z = x + iy \in \mathbb{C} : y > 0\}$ and $SL(2, \mathbb{R})$ be the group of (2×2) -matrices of determinant +1. For $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL(2, \mathbb{R})$ and $z \in \mathbb{H}$, define $A \cdot z = \frac{az+b}{cz+d}$.

7A. Prove that this gives an *action* of $SL(2, \mathbb{R})$ on \mathbb{H} .

7B. Find the *stabilizer* (= isotropy subgroup) of this action at z = i.

7C. Is the action *transitive*? Explain why/not.

8. Let $p: (\tilde{X}, \tilde{x}_0) \to (X, x_0)$ be a covering space, and $f: (Y, y_0) \to (X, x_0)$ a continuous map. Then a lift $\tilde{f}: (Y, y_0) \to (\tilde{X}, \tilde{x}_0)$ exists if and only if $f_*(\pi_1(Y, y_0)) \subset p_*(\pi_1(\tilde{X}, \tilde{x}_0))$.

9. Let $p: (\hat{X}, \hat{x}_0) \to (X, x_0)$ be a covering map. Prove that the deck transformation group is isomorphic to $N_{\pi_1(X, x_0)} \left(p_*(\pi_1(\hat{X}, \hat{x}_0)) \right)$, the normalizer of $p_*(\pi_1(\hat{X}, \hat{x}_0))$ in $\pi_1(X, x_0)$.

10. Let X be the space obtained by the unit disk D in $\mathbb{C} = \mathbb{R}^2$, the boundary identified with itself by the map $f(z) = z^3$; Y a 2-torus. Construct a new space by "connected sum" as follows: Remove a small disk from the interior of D (now part of X), and a small disk from Y, and glue them by a cylinder to make Z. Calculate $\pi_1(Z)$.

11. For a given group $G = \langle g_{\alpha_1}, g_{\alpha_2}, \cdots, g_{\alpha_n} | r_{\beta_1}, r_{\beta_2}, \cdots, r_{\beta_m} \rangle$, construct a Cayley complex \tilde{X}_G (a 2-dimensional CW complex) which is simply connected with a properly discontinuous and free (i.e., covering space) action of G. Describe the G-action, and identify the orbit space $G \setminus \tilde{X}_G$.