Department of Mathematics

PhD Qualifying Exam in Analysis (MATH 5453-5463)

May 2010
Directions: Work as many problems as you can; there are 100 total points. If you are asked to "state" a theorem, then no proof is expected unless it is asked for explicitly. You have three hours to complete this exam.

Notation: Unless specified otherwise, $L^{p}(\mu)$ (for $\left.1 \leq p \leq \infty\right)$ denotes the space of L^{p} functions on an abstract measure space (X, \mathcal{M}, μ). We use notations such as $L^{p}([a, b]), L^{p}\left([a, \infty)\right.$, and $\left.L^{p}(\mathbb{R})\right)$ to denote the space of L^{p} functions on the indicated interval with respect to the standard Lebesgue measure, which we denote by \mathfrak{m}. Integrals with respect to the standard Lebesgue measure may be denoted by either $\int_{[a, b]} f d \mathfrak{m}$ or $\int_{a}^{b} f(t) d \mathfrak{m}(t)$. We also use $C([a, b])$ to denote the set of continuous real-valued functions on the interval $[a, b]$.
(1) Consider the metric spaces $\left(C([0,1]), d_{1}\right)$ and $\left(C([0,1]), d_{2}\right)$, where the metrics d_{1} and d_{2} are defined by

$$
d_{1}(f, g)=\int_{0}^{1}|f(x)-g(x)| d x, \quad d_{2}(f, g)=\sup \{|f(x)-g(x)|: x \in[0,1]\}, \quad(\text { for } f, g \in C([0,1]))
$$

Also let $I: C([0,1]) \rightarrow C([0,1])$ denote the identity mapping $I(f)=f$.
(a) [5pts] Is the mapping $I:\left(C([0,1]), d_{1}\right) \rightarrow\left(C([0,1]), d_{2}\right)$ continuous? Justify your answer by either a proof (if the assertion is true) or a counterexample (if the assertion is false).
(b) [5pts] Is the mapping $I:\left(C([0,1]), d_{2}\right) \rightarrow\left(C([0,1]), d_{1}\right)$ continuous? Justify your answer by either a proof (if the assertion is true) or a counterexample (if the assertion is false).
(c) [4pts] One of the metric spaces $\left(C([0,1]), d_{1}\right)$ and $\left(C([0,1]), d_{2}\right)$ is complete and the other is not. Which is which? Explain your answer, but you don't have to provide any detailed proofs.
(2) Let $\left(r_{n}\right)$ be an enumeration of the rational numbers \mathbb{Q} and let $A \subseteq \mathbb{R}$ be the set defined by

$$
A=\bigcap_{m=1}^{\infty} \bigcup_{n=1}^{\infty}\left(r_{n}-\frac{1}{m 2^{n+1}}, r_{n}+\frac{1}{m 2^{n+1}}\right)
$$

(a) [3pts] Explain why A is a Lebesgue measurable set and compute its Lebesgue measure $\mathfrak{m}(A)$.
(b) [3pts] With respect to the complete metric space \mathbb{R} (usual metric understood) is A a first category set or a second category set? Explain.
(c) $[3 \mathrm{pts}]$ Is $A=\bigcup_{n=1}^{\infty} \bigcap_{m=1}^{\infty}\left(r_{n}-\frac{1}{m 2^{n+1}}, r_{n}+\frac{1}{m 2^{n+1}}\right)$? Explain.
(3) (a) [3pts] State Fatou's lemma for the Lebesgue integral.
(b) $[8 \mathrm{pts}]$ Let $(X, \boldsymbol{\mathcal { M }}, \mu)$ be a measure space, let $1 \leq p<\infty$, and let $\left\{f_{n}: X \rightarrow \mathbb{R} \mid n \in \mathbb{N}\right\}$ be a sequence of functions in $L^{p}(\mu)$ such that for some real number $M>0$ we have $\left\|f_{n}\right\|_{p} \leq M$ for every $n \in \mathbb{N}$. If $\left(f_{n}\right)$ converges in measure to a measurable function $f: X \rightarrow \mathbb{R}$, then prove that $f \in L^{p}(\mu)$.
(c) [3pts] For the situation in part (b) can we also conclude that $f_{n} \rightarrow f$ in the L^{p} norm? Explain.
(4) [8pts] If $(X, \boldsymbol{\mathcal { M }}, \mu)$ is a measure space and if $f \in L^{1}(\mu)$, then prove that for every $\epsilon>0$ there exists a measurable set $F \in \mathcal{M}$ such that $\mu(F)<\infty$ and $\int_{X \backslash F}|f| d \mu<\epsilon$.
(5) [8pts] Prove that if $f \in L^{1}([a, b])$ has the property that $\int_{a}^{x} f(t) d \mathfrak{m}(t)=0$ for every $x \in[a, b]$, then $f=0$ a. e. on $[a, b]$.
(continued on next page)
(6) (a) $[3 \mathrm{pts}]$ State Hölder's inequality.
(b) [5pts] Let (X, \mathcal{M}, μ) be a measure space and let $r, s \in \mathbb{R}$ be such that $r>1$ and $s>1$ (note that r and s are otherwise arbitrary). Find a positive real number α for which the following assertion is true.

$$
f \in L^{r}(\mu) \text { and } g \in L^{s}(\mu) \quad \Rightarrow \quad|f g|^{\alpha} \in L^{1}(\mu)
$$

(your answer will depend on r and s).
(7) [8pts] Let $f:[a, b] \rightarrow \mathbb{R}$ be a function that is continuous at every point of the closed interval $[a, b]$, differentiable at every point of the open interval (a, b), and for which there exists a real number $M>0$ such that $\left|f^{\prime}(x)\right| \leq M$ for every $x \in(a, b)$. Prove that f is absolutely continuous on $[a, b]$.
(8) Let $(X, \boldsymbol{\mathcal { M }}, \mu)$ and $(Y, \boldsymbol{\mathcal { N }}, \nu)$ be σ-finite measure spaces, and let $(X \times Y, \boldsymbol{\mathcal { M }} \times \boldsymbol{\mathcal { N }}, \mu \times \nu)$ be the product measure space.
(a) [3pts] If $E \in \boldsymbol{\mathcal { M }} \times \boldsymbol{\mathcal { N }}$, then express the product measure $(\mu \times \nu)(E)$ in terms of two equivalent integrals, where one integral is with respect to the measure μ and the other integral is with respect to the measure ν (this is part of the statement of the product measure theorem, but no proofs are being asked for here).
(b) [7pts] Prove that if $\lambda: \mathcal{M} \rightarrow[0, \infty]$ and $\eta: \mathcal{N} \rightarrow[0, \infty]$ are σ-finite measures for which $\lambda \ll \mu$ and $\eta \ll \nu$, then $\lambda \times \eta \ll \mu \times \nu$.
(9) This problem deals with the "counting measure space" $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$, where $\mathcal{P}(\mathbb{N})$ is the power set of \mathbb{N} and μ is the counting measure.
(a) [4pts] Describe the space $L^{p}(\mu)$ for $1 \leq p<\infty$ (be as specific as possible).
(b) [3pts] Give an example of a function $f: \mathbb{N} \rightarrow \mathbb{R}$ such that $f \in L^{2}(\mu)$, but $f \notin L^{1}(\mu)$.
(c) $[6 \mathrm{pts}]$ Prove that $L^{1}(\mu) \subseteq L^{2}(\mu)$.
(10) (a) [3pts] State the Riesz Representation Theorem for $L^{p}(\mu)$.
(b) [5pts] For the counting measure space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ (see Problem (9)) show that $\Lambda: L^{2}(\mu) \rightarrow \mathbb{R}$ defined by

$$
\Lambda(f)=\sum_{n=1}^{\infty} \frac{f(n)}{n} \quad\left(f \in L^{2}(\mu)\right)
$$

is a bounded linear functional on $L^{2}(\mu)$ and compute the norm of Λ.

