Department of Mathematics

PhD Qualifying Exam in Analysis (MATH 5453-5463)

May 2010

Directions: Work as many problems as you can; there are 100 total points. If you are asked to "state" a theorem, then no proof is expected unless it is asked for explicitly. You have three hours to complete this exam.

Notation: Unless specified otherwise, $L^p(\mu)$ (for $1 \le p \le \infty$) denotes the space of L^p functions on an abstract measure space (X, \mathcal{M}, μ) . We use notations such as $L^p([a, b])$, $L^p([a, \infty)$, and $L^p(\mathbb{R})$) to denote the space of L^p functions on the indicated interval with respect to the standard Lebesgue measure, which we denote by \mathfrak{m} . Integrals with respect to the standard Lebesgue measure may be denoted by either $\int_{[a,b]} f d\mathfrak{m}$ or $\int_a^b f(t) d\mathfrak{m}(t)$. We also use C([a, b]) to denote the set of continuous real-valued functions on the interval [a, b].

(1) Consider the metric spaces $(C([0,1]), d_1)$ and $(C([0,1]), d_2)$, where the metrics d_1 and d_2 are defined by

$$d_1(f,g) = \int_0^1 |f(x) - g(x)| \, dx, \quad d_2(f,g) = \sup\{|f(x) - g(x)| : x \in [0,1]\}, \quad (\text{for } f,g \in C([0,1])).$$

Also let $I : C([0,1]) \to C([0,1])$ denote the identity mapping I(f) = f.

- (a) [5pts] Is the mapping $I : (C([0,1]), d_1) \to (C([0,1]), d_2)$ continuous? Justify your answer by either a proof (if the assertion is true) or a counterexample (if the assertion is false).
- (b) [5pts] Is the mapping $I: (C([0,1]), d_2) \to (C([0,1]), d_1)$ continuous? Justify your answer by either a proof (if the assertion is true) or a counterexample (if the assertion is false).
- (c) [4pts] One of the metric spaces $(C([0,1]), d_1)$ and $(C([0,1]), d_2)$ is complete and the other is not. Which is which? Explain your answer, but you don't have to provide any detailed proofs.
- (2) Let (r_n) be an enumeration of the rational numbers \mathbb{Q} and let $A \subseteq \mathbb{R}$ be the set defined by

$$A = \bigcap_{m=1}^{\infty} \bigcup_{n=1}^{\infty} \left(r_n - \frac{1}{m2^{n+1}}, r_n + \frac{1}{m2^{n+1}} \right)$$

- (a) [3pts] Explain why A is a Lebesgue measurable set and compute its Lebesgue measure $\mathfrak{m}(A)$.
- (b) [3pts] With respect to the complete metric space \mathbb{R} (usual metric understood) is A a first category set or a second category set? Explain.

(c) [3pts] Is
$$A = \bigcup_{n=1}^{\infty} \bigcap_{m=1}^{\infty} \left(r_n - \frac{1}{m2^{n+1}}, r_n + \frac{1}{m2^{n+1}} \right)$$
? Explain.

(3) (a) [3pts] State Fatou's lemma for the Lebesgue integral.

(b) [8pts] Let (X, \mathcal{M}, μ) be a measure space, let $1 \leq p < \infty$, and let $\{f_n : X \to \mathbb{R} \mid n \in \mathbb{N}\}$ be a sequence of functions in $L^p(\mu)$ such that for some real number M > 0 we have $||f_n||_p \leq M$ for every $n \in \mathbb{N}$. If (f_n) converges in measure to a measurable function $f : X \to \mathbb{R}$, then prove that $f \in L^p(\mu)$. (c) [3pts] For the situation in part (b) can we also conclude that $f_n \to f$ in the L^p norm? Explain.

- (4) [8pts] If (X, \mathcal{M}, μ) is a measure space and if $f \in L^1(\mu)$, then prove that for every $\epsilon > 0$ there exists a measurable set $F \in \mathcal{M}$ such that $\mu(F) < \infty$ and $\int_{X \setminus F} |f| d\mu < \epsilon$.
- (5) [8pts] Prove that if $f \in L^1([a, b])$ has the property that $\int_a^x f(t) d\mathfrak{m}(t) = 0$ for every $x \in [a, b]$, then f = 0 a. e. on [a, b].

(continued on next page)

(6) (a) [3pts] State Hölder's inequality.

(b) [5pts] Let (X, \mathcal{M}, μ) be a measure space and let $r, s \in \mathbb{R}$ be such that r > 1 and s > 1 (note that r and s are otherwise arbitrary). Find a positive real number α for which the following assertion is true.

$$f \in L^r(\mu)$$
 and $g \in L^s(\mu) \implies |fg|^{\alpha} \in L^1(\mu)$

(your answer will depend on r and s).

- (7) [8pts] Let $f : [a, b] \to \mathbb{R}$ be a function that is continuous at every point of the closed interval [a, b], differentiable at every point of the open interval (a, b), and for which there exists a real number M > 0 such that $|f'(x)| \le M$ for every $x \in (a, b)$. Prove that f is absolutely continuous on [a, b].
- (8) Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ -finite measure spaces, and let $(X \times Y, \mathcal{M} \times \mathcal{N}, \mu \times \nu)$ be the product measure space.
 - (a) [3pts] If $E \in \mathcal{M} \times \mathcal{N}$, then express the product measure $(\mu \times \nu)(E)$ in terms of two equivalent integrals, where one integral is with respect to the measure μ and the other integral is with respect to the measure ν (this is part of the statement of the product measure theorem, but no proofs are being asked for here).
 - (b) [7pts] Prove that if $\lambda : \mathcal{M} \to [0, \infty]$ and $\eta : \mathcal{N} \to [0, \infty]$ are σ -finite measures for which $\lambda \ll \mu$ and $\eta \ll \nu$, then $\lambda \times \eta \ll \mu \times \nu$.
- (9) This problem deals with the "counting measure space" $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$, where $\mathcal{P}(\mathbb{N})$ is the power set of \mathbb{N} and μ is the counting measure.
 - (a) [4pts] Describe the space $L^p(\mu)$ for $1 \le p < \infty$ (be as specific as possible).
 - (b) [3pts] Give an example of a function $f : \mathbb{N} \to \mathbb{R}$ such that $f \in L^2(\mu)$, but $f \notin L^1(\mu)$.
 - (c) [6pts] Prove that $L^1(\mu) \subseteq L^2(\mu)$.
- (10) (a) [3pts] State the Riesz Representation Theorem for L^p(μ).
 (b) [5pts] For the counting measure space (N, P(N), μ) (see Problem (9)) show that Λ : L²(μ) → R defined by

$$\Lambda(f) = \sum_{n=1}^{\infty} \frac{f(n)}{n} \quad (f \in L^2(\mu))$$

is a bounded linear functional on $L^2(\mu)$ and compute the norm of Λ .