Qualifying Examination

Real Analysis

Aug 19, 2009

Name: \qquad
Problem 1. $[3+3+3+3+3+3$ points]
Let μ be a finite measure on \mathbb{R}, and the function $F: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
F(x)=\mu((-\infty, x]) .
$$

In your answers of (a) and (b), please specify explicitly which properties of μ you have used.
(a) Prove that F is non-decreasing (i.e., that $x<y$ implies that $F(x) \leq F(y))$.
(b) Show that F is right-continuous.
(c) If the measure μ is such that $\mu(\{3\})=5$ and $\mu(\{8\})=4$, and the measure of any set that does not contain 3 and 8 is zero, sketch the function F, indicating all important points on your graph.
(d) The measure μ defined in part (c) defines a distribution. Express this distribution in terms of Dirac delta-distirbutions.
(e) If $f: \mathbb{R} \rightarrow \mathbb{R}: x \mapsto x^{2}$ and μ is the measure defined in part (c), find the value of $\int_{\mathbb{R}} f(x) \mathrm{d} \mu(x)$.

Problem 2. [5 points]
Let $f \in L_{\text {loc }}^{1}(\mathbb{R})$ and let f be continuous at x. Prove that x belongs to the Lebesgue set of f.

Problem 3. $[2+3+2+3$ points]
Let $X=[0, \infty), m$ be the Lebesgue measure on $[0, \infty)$, and let $\mathrm{d} \mu:=f \mathrm{~d} m$, where

$$
f:[0, \infty) \rightarrow \mathbb{C}: x \mapsto \mathrm{e}^{-x+i x}
$$

(a) Is μ absolutely continuous with respect to m ? Why?
(b) Compute $\mu\left(\left[0, \frac{\pi}{2}\right]\right)$. You may use the definite intergrals $\int_{0}^{\pi / 2} \mathrm{e}^{-x} \cos x \mathrm{~d} x=\frac{1}{2}\left(1+\mathrm{e}^{-\pi / 2}\right)$ and $\int_{0}^{\pi / 2} \mathrm{e}^{-x} \sin x \mathrm{~d} x=\frac{1}{2}\left(1-\mathrm{e}^{-\pi / 2}\right)$.
(c) What is $\mathrm{d}|\mu|$? (Just write it down without explanations.)
(d) Compute $|\mu|\left(\left[0, \frac{\pi}{2}\right]\right)$.

Problem 4. [5 points]
Consider the function $F:[-1,1] \rightarrow \mathbb{R}$ defined by

$$
F(x)= \begin{cases}x \sin \frac{1}{x} & \text { if } x \in[-1,0) \cup(0,1], \\ 0 & \text { if } x=0\end{cases}
$$

Demonstrate that F is not a function of bounded variation on $[-1,1]$.

Problem 5. [4+4+2 points]
Let (X, \mathcal{M}, μ) be a measure space. Suppose that $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a sequence of functions such that $f_{n} \in L^{1}(X, \mu)$ for any $n \in \mathbb{N}$, and $f_{n} \rightarrow f$ uniformly on X.
(a) [4 points] Assume that $\mu(X)<\infty$, and show that $f \in L^{1}(X, \mu)$.
(b) [4 points] Again, assume that $\mu(X)<\infty$, and show that $\int f_{n} \mathrm{~d} \mu \rightarrow \int f \mathrm{~d} \mu$ by using some of the famous convergence theorems.
(c) [4 points] Construct an explicit example (using \mathbb{R} and the Lebesgue measure m on it) of a sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ of $L^{1}(\mathbb{R}, m)$ functions such that $f_{n} \rightarrow f$ uniformly on \mathbb{R}, but $\int f_{n} \mathrm{~d} m$ does not converge to $\int f \mathrm{~d} m$.

Problem 6. $[2+2+2+2+2$ points $]$
Consider the sequence of functions $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ defined by $f_{n}=\sqrt{n} \chi_{\left[0, \frac{1}{n}\right]}$. Let m is the Lebesgue measure on $[0,1]$. Does this function sequence converge (and if yes, then to what limit)
(a) pointwise m-almost everywhere on \mathbb{R} ?
(b) in $L^{1}(\mathbb{R})$?
(c) in $L^{2}(\mathbb{R})$?
(d) in measure?
(e) in $\mathcal{D}^{\prime}(\mathbb{R})$? (Recall that a sequence of distributions $\left\{F_{n}\right\}_{n \in \mathbb{N}} \subset \mathcal{D}^{\prime}(\mathbb{R})$ converges to $F \in \mathcal{D}^{\prime}(\mathbb{R})$ if $\left\langle F_{n}, \phi\right\rangle \rightarrow\langle F, \phi\rangle$ for any test function $\phi \in \mathcal{D}(\mathbb{R})$.)

Problem 7. [3+2+4 points]

Let $\left\{E_{n}\right\}_{n=1}^{\infty}$ be a sequence of measurable sets in the measure space (X, \mathcal{M}, μ), and define

$$
E:=\left\{x \in X: x \in E_{n} \text { for infinitely many } n \in \mathbb{N}\right\}
$$

(a) [3 points] Show that $E=\bigcap_{k \in \mathbb{N}} \bigcup_{n \geq k} E_{n}$.
(b) 3 points] Prove that $E \in \mathcal{M}$.
(b) [4 points] Use the representation from (a) to prove that if $\sum_{n \in \mathbb{N}} \mu\left(E_{n}\right)<\infty$, then $\mu(E)=0$.

Problem 8. [5 points]

Demonstrate that the condition that the measure be finite in Egoroff's Theorem is indeed necessary. Hint: Consider the function sequence $\left\{f_{n}\right\}$ defined by $f_{n}:[0, \infty) \rightarrow \mathbb{R}: x \mapsto \frac{x}{n}$.

Problem 9. [5 points]

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function satisfying $\int_{\mathbb{R}}(1+|x|)^{-N}|f(x)| \mathrm{d} x \leq C$ for some $N \in \mathbb{N}$ and some positive constant C. Prove that f determines a tempered distribution, i.e., that $|\langle f, \phi\rangle|<\infty$ for any $\phi \in \mathcal{S}$.
Hint: You have to prove that $|\langle f, \phi\rangle| \leq$ const $\cdot\|\phi\|_{M, k}$ for some M and k, where the seminorms $\left\|\|_{M, k}<\infty\right.$ are defined as $\| \phi \|_{M, k}=\sup _{x \in \mathbb{R}}(1+|x|)^{M}\left|\phi^{(k)}(x)\right|$.

Problem 10. [$3+3+4$ points]

(a) Give an example of a function in $L^{1}([0,1], m)$ that does not belong to $L^{2}([0,1], m)$ (where m is the Lebesgue measure on $[0,1])$.
(b) Give an example of a function in $L^{2}([0, \infty), m)$ that does not belong to $L^{1}([0, \infty), m$) (where m is the Lebesgue measure on $[0, \infty)$).
Hint: The function must be supported on a set of infinite measure - see part (c).
(c) Prove that, if the measure μ of a set E is finite, then if $f \in L^{2}(E, \mu)$, then $f \in L^{1}(E, \mu)$.

Problem 11. [3+5 points]

(a) Jensen's inequality holds for probability measures, i.e., positive measures such the measure of the whole space is 1 . Generalize Jensen's inequality to any finite measure space (Y, \mathcal{A}, ν) (i.e., such that $\nu(Y)<\infty$).
(b) Assume that (X, \mathcal{M}, μ) is a measure space (not necessarily finite), and the function $f \in$ $L^{1}(X, \mathcal{M}, \mu)$ satisfies $\|f\|_{1}=\int_{X}|f(x)| \mathrm{d} \mu(x)=1$. Prove that

$$
\int_{E} \log |f(x)| \mathrm{d} \mu(x) \leq-\mu(E) \log \mu(E)
$$

for all subsets $E \in \mathcal{M}$ such that $0<\mu(E)<\infty$.
Hint: The function $-\log t$ is convex on $(0, \infty)$.

Problem 12. [3+3+6 points]

Let $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of functions in $L^{1}(\mathbb{R})$ such that $\left\|f_{n}-f_{n+1}\right\|_{1} \leq \frac{1}{2^{n}}$.
(a) Show that $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence in $L^{1}(\mathbb{R})$.
(b) Does $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ converge in the L^{1} norm? Why?
(c) Prove that $f_{n} \rightarrow f m$-a.e.

Hint: First write $f_{n}(x)-f(x)$ as a telescoping series and use the triangle inequality to find an upper bound on $\left|f_{n}(x)-f(x)\right|$ in terms of a sum of terms of the form $\left|f_{j}(x)-f_{j+1}(x)\right|$. Then assume that f_{n} does not converge m-a.e. to f, i.e., there exists a set of a positive measure on which $\left|f_{n}(x)-f(x)\right|$ does not tend to 0 as $n \rightarrow \infty$. Use this and the upper bound on $\left|f_{n}(x)-f(x)\right|$ to come to a contradiction.

