Algebra Qualifying Exam, Spring 2009

1. Find the greatest common divisor of the polynomials $p(x)=x^{4}+x^{3}+2 x^{2}+x+1$ and $q(x)=x^{5}+2 x^{3}+x$ in $\mathbb{R}[x]$.
2. Let $A \in M_{k k}(\mathbb{C}), B \in M_{k n}(\mathbb{C})$, and $D \in M_{n n}(\mathbb{C})$. Show that

$$
\operatorname{det}\left(\begin{array}{cc}
A & B \\
0 & D
\end{array}\right)=\operatorname{det}(A) \operatorname{det}(D)
$$

3. Let V be a finite dimensional inner product space over \mathbb{C} and let $L: V \rightarrow V$ be a self-adjoint map such that $L^{2}=0$. Find L.
4. Let G be a non-abelian group of order p^{n}, where p is prime and n is a positive integer. Prove that any subgroup of order p^{n-1} is normal.
5. Let G be a free abelian group of rank n and let $H \subseteq G$ be a free abelian group of rank n. Prove that H has finite index in G.
6. Let G be a finite group of order $p^{n} r$ where the prime p does not divide r. Let $P \subseteq G$ be a Sylow p-subgroup and let N be the normalizer of P in G. Show that the normalizer of N in G is equal to N.
7. How many elements of order 5 are there in a simple group of order 120 ?
8. Recall the action of the group $S L(2, \mathbb{Z})$ on $\mathbb{R} \cup\{\infty\}$:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)(x)=\left\{\begin{array}{l}
\frac{a x+b}{c x+d} \text { if } c x+d \neq 0 \\
\infty \text { if } c x+d=0 \\
\frac{a}{c} \text { if } x=\infty
\end{array}\right.
$$

Show that the orbit of 0 is equal to $\mathbb{Q} \cup\{\infty\}$.
9. Give an example of an integral domain which is not a unique factorization domain.
10. Prove that an integral domain with finitely many elements is a field.
11. What is a necessary and sufficient condition on a positive integer N so that the positive square root $\sqrt{N} \in \mathbb{Q}\left(2^{1 / 3}\right)$?
12. Give an example of a countable algebraically closed field.
13. Let F be a field of characteristic $p>0$. Show that the map

$$
F \ni x \rightarrow x^{p} \in F
$$

is a ring homomorphism.
14. Define a composition series of a group.

