Name: \qquad
Problem 1. $[0+2+3+3+2+5$ points $]$
Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a non-decreasing, right-continuous function defined by

$$
F(x)= \begin{cases}0 & \text { if } x<0 \\ 3+x & \text { if } x \in[0,2) \\ 5 & \text { if } 2 \leq x,\end{cases}
$$

and let μ_{F} be the Borel measure associated with F. Let m stand for the Lebesgue measure on \mathbb{R}.
(a) Sketch the function F.
(b) Give a one-line argument showing that μ_{F} is not absolutely continuous with respect to m.
(c) Write down the Lebesgue-Radon-Nikodym representation, $\mathrm{d} \mu_{F}=f \mathrm{~d} m+\mathrm{d} \lambda$, of μ_{F} with respect to m. What is f ? Why is the question "What is $f(1)$?" meaningless?
(d) Identify clearly the discrete, the absolutely continuous, and the singularly continuous parts of the measure μ_{F}.
(e) Compute $\int_{5}^{7} \cos \left(x^{2}\right) \mathrm{d} \mu_{F}(x)$.
(f) Now think of the function F as a distribution (denoted by the same letter), i.e., let $F \in \mathcal{D}^{\prime}(\mathbb{R})$ be defined by $\langle F, \phi\rangle=\int_{\mathbb{R}} F(x) \phi(x) \mathrm{d} m(x)$. What does the general theory say about the derivative, $F^{\prime} \in \mathcal{D}^{\prime}(\mathbb{R})$, of the distribution F ? Write down $\left\langle F^{\prime}, \phi\right\rangle$ in terms of the values and integrals of the test function $\phi \in \mathcal{D}(\mathbb{R})$.

Problem 2. [5 points]

Let ν be a signed measure. Prove that E is ν-null if and only if $|\nu|(E)=0$.
Hint: Use the Hahn decomposition for ν.

Problem 3. [4+4 points]

(a) Prove that the set of real-valued Borel measurable functions on \mathbb{R} is closed under functional composition. In other words, show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are Borel measurable, then $f \circ g$ is Borel measurable.
(b) Give an example showing that the set of all real-valued functions on \mathbb{R} that are L^{1} is not closed under functional composition. (I.e., find a pair of L^{1} functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f \circ g$ is not in L^{1}.)

Problem 4. [3+3+3+3+3 points]
Let $X=\{a, b, c\}, \mathcal{M}=\mathscr{P}(X)$ (i.e., all subsets of X are in the σ-algebra \mathcal{M}), and the measure $\mu: \mathcal{M} \rightarrow[0, \infty]$ be defined by

$$
\mu(\{a\})=0, \quad \mu(\{b\})=1, \quad \mu(\{c\})=\infty .
$$

Consider the set of all real-valued functions on X. Define the operations "addition" and "multiplication by a scalar" as usual: if $f: X \rightarrow \mathbb{R}, g: X \rightarrow \mathbb{R}, \alpha \in \mathbb{R}$, then $(f+g)(j):=f(j)+g(j)$, $(\alpha f)(j):=\alpha f(j)$ for $j \in\{a, b, c\}$. Clearly, the set of real-valued functions on X forms a real vector space.
(a) [3 points] What is the most general form of a real-valued function on X ? What is the dimension of the real vector space of such functions?
(b) [3 points] What is the most general form of all real-valued functions on X satisfying $\int|f| \mathrm{d} \mu<\infty$?
(c) [3 points] Prove that the functions considered in part (b) form a real vector space.
(d) [3 points] What is the dimension of the vector space from part (c)? Explain briefly.
(e) [3 points] What is the dimension of the space $L^{1}(X, \mu)$? Explain your reasoning.

Problem 5. [4+4 points]

(a) Let X and Y be arbitrary sets, and $f: X \rightarrow Y$ be an arbitrary function. Let J be a countable set, and $\left\{E_{j}\right\}_{j \in J}$ be an arbitrary family of subsets of Y. Prove that $f^{-1}\left(\bigcup_{j \in J} E_{j}\right)=\bigcup_{j \in J} f^{-1}\left(E_{j}\right)$.
(b) Let (X, \mathcal{M}, μ) be a measure space, and $g: X \rightarrow \overline{\mathbb{R}}$ be a function from the set X to the extended real line such that $g^{-1}((r, \infty]) \in \mathcal{M}$ for each rational number $r \in \mathbb{Q}$. Use your result from part (a) to prove that the function g is measurable.

Problem 6. [4+4 points]

Let ν be a signed measure on the measurable space (X, \mathcal{M}), and ν^{+}, ν^{-}, and $|\nu|$ be its positive, negative, and total variations, respectively.
(a) Prove that $L^{1}(\nu)=L^{1}(|\nu|)$.
(b) Show that, for any $f \in L^{1}(\nu),\left|\int f \mathrm{~d} \nu\right| \leq \int|f| \mathrm{d}|\nu|$.

Problem 7. $[4+4+4+4$ points]

(a) Prove that the only solution of the equation $x(x-1)^{2} u(x)=0$ in the space of continuous functions, $u \in C(\mathbb{R})$, is the function $u(x)=0$ for all $x \in \mathbb{R}$.
(b) For $a \in \mathbb{R}$, let $\delta_{a} \in \mathcal{D}^{\prime}(\mathbb{R})$ be the distribution defined as $\left\langle\delta_{a}, \phi\right\rangle=\phi(a)$ for $\phi \in \mathcal{D}(\mathbb{R})$. Recall that in class and in tests we proved the relations $\psi \delta_{a}=\psi(a) \delta_{a}, \psi \delta_{a}^{\prime}=\psi(a) \delta_{a}^{\prime}-\psi^{\prime}(a) \delta_{a}$, and $\psi \delta_{a}^{\prime \prime}=\psi(a) \delta_{a}^{\prime \prime}-2 \psi^{\prime}(a) \delta_{a}^{\prime}+\psi^{\prime \prime}(a) \delta_{a}$, for any $\psi \in C^{\infty}(\mathbb{R})$. Show that the equation $x(x-1)^{2} u(x)=0$ has a non-zero solution in the space of distributions $\mathcal{D}^{\prime}(\mathbb{R})$ - namely, the distribution $C_{1} \delta_{0}+C_{2} \delta_{1}+C_{3} \delta_{1}^{\prime}$ satisfies the equation.
(c) Derive an expression for $\psi \delta_{a}^{\prime \prime \prime}$ in terms of the values of the function $\psi \in C^{\infty}(\mathbb{R})$ and its derivatives at a, and derivatives of δ_{a}.
(d) Show by direct substitution that $\delta_{a}^{\prime \prime \prime}$ is not a solution of $x(x-1)^{2} u(x)=0$.

Problem 8. $[3+2+2+5$ points $]$
(a) Let $f \in L^{1}(\mathbb{R})$. Prove that $\lim _{R \rightarrow \infty} \int_{R}^{\infty}|f(x)| \mathrm{d} x=0$. Specify which theorems you use in your proof.
(b) Write the precise mathematical definition of the statement
"the function $f: \mathbb{R} \rightarrow \mathbb{R}$ does not tend to 0 as its argument tends to ∞ ".
(c) Write the precise mathematical definition of the statement "the function $f: \mathbb{R} \rightarrow \mathbb{R}$ is uniformly continuous".
(d) Use parts (a)-(c) to show that, if $f \in L^{1}(\mathbb{R})$ and f is uniformly continuous, then $\lim _{x \rightarrow \infty} f(x)=0$.

Problem 9. [6 points]

Let $f \in L^{p}(\mathbb{R})$. If there exists $h \in L^{p}(\mathbb{R})$ satisfying

$$
\lim _{y \rightarrow 0}\left\|\frac{\tau_{-y} f-f}{y}-h\right\|_{p}=0,
$$

we call h the (strong) L^{p}-derivative of f. Let p and q be conjugate exponents, $f \in L^{p}(\mathbb{R}), g \in L^{q}(\mathbb{R})$, and the strong L^{p}-derivative of f exists. Prove that the function $(f * g)$ is differentiable in the ordinary sense and $(f * g)^{\prime}=\left(f^{\prime}\right) * g$ (where f^{\prime} is the strong L^{p}-derivative of f).

Problem 10. [$3+3+3+4+4$ points]
Let (X, \mathcal{M}, μ) be a probability space (i.e., a measure space with $\mu(X)=1$), let $f: X \rightarrow \mathbb{R}$ be in $L^{1}(\mu)$, and $\mathcal{A} \subset \mathcal{M}$ be a σ-subalgebra of \mathcal{M}.
(a) Prove that $\nu: A \mapsto \int_{A} f(x) \mathrm{d} \mu(x)$ (for $\left.A \in \mathcal{A}\right)$ defines a signed measure on (X, \mathcal{A}).
(b) Show that the signed measure ν defined in (a) is absolutely continuous with respect to $\left.\mu\right|_{\mathcal{A}}$.
(c) Use the Lebesgue-Radon-Nikodym Theorem to show the existence of a \mathcal{A}-measurable function $g: X \rightarrow \mathbb{R}$ satisfying

$$
\int_{A} g(x) \mathrm{d} \mu(x)=\int_{A} f(x) \mathrm{d} \mu(x) \quad \text { for all } A \in \mathcal{A}
$$

(d) Let $X=[0,1]$ and μ be the Lebesgue measure on X. Let \mathcal{A} be the σ-algebra generated by the sets $\left[0, \frac{1}{2}\right]$ and $\left[\frac{1}{3}, 1\right]$. Write down all the sets in \mathcal{A}.
Hint: \mathcal{A} consists of exactly 8 subsets of $[0,1]$.
(e) Let $f:[0,1] \rightarrow \mathbb{R}: x \mapsto x^{2}$, and $g:[0,1] \rightarrow \mathbb{R}$ be as in (c). Find the explicit expression for g. Hint: The function g is a sum of three indicator functions.

Problem 11. [4+4 points]
(a) Show that the function $f: \mathbb{R} \rightarrow \mathbb{R}: x \mapsto \mathrm{e}^{x}$ does not define a tempered distribution.
(b) Prove that, if $h: \mathbb{R} \rightarrow \mathbb{R}$ is a bounded function in $C^{1}(\mathbb{R})$, then $g: \mathbb{R} \rightarrow \mathbb{R}: x \mapsto \mathrm{e}^{x} h^{\prime}\left(\mathrm{e}^{x}\right)$ defines a tempered distribution.
Hint: Use integration by parts to show that $\langle g, \phi\rangle$ is bounded from above by a constant times $\|\phi\|_{(2,1)}$, where $\|\phi\|_{N, \alpha}=\sup _{x \in \mathbb{R}}(1+|x|)^{N}\left|\partial^{\alpha} \phi(x)\right|$.

