Algebra Qualifying Exam, Spring 2009

1. State the Fundamental Theorem of Algebra.
2. Find the eigenvalues and the eigenvectors of the following matrix

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

3. Let V be a finite dimensional vector space over a field F and let $T: V \rightarrow V$ be a linear map such that $\operatorname{Ker}(T) \cap \operatorname{Im}(T)=\{0\}$. Show that

$$
V=\operatorname{Ker}(T) \oplus \operatorname{Im}(T)
$$

4. State Spectral Theorem for the finite dimensional vector spaces, with an inner product, over \mathbb{R} or \mathbb{C}.
5. Let V be an n-dimensional vector space over \mathbb{R}, with an inner product, and let $A \subseteq \operatorname{End}(V)$ be a vector subspace of mutually commuting self adjoint linear maps $L: V \rightarrow V$. What is the maximal dimension of A ?
6. State the Structure Theorem for the finitely generated abelian groups.
7. How many abelian groups, up to an isomorphism, of order 27 are there?
8. Let G be a group in which all elements other than the identity have order 2 . Prove that G is abelian.
9. State Sylow Theorem.
10. How many elements of order 7 are there in a simple group of order 168 ?
11. Decompose \mathbb{R}^{2} into the disjoint union of orbits under the action of the orthogonal group O_{2}.
12. Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be a ring homomorphism such that $\phi(1)=1$. Show that ϕ is the identity map. (Here \mathbb{R} is the field of real numbers.)
13. Suppose R is an integral domain and $F \subseteq R$ is a subring that is a field. Prove that if the dimension of R, viewed as a vector space over F, is finite that R is also a field.
14. What is a necessary and sufficient condition on a positive integer N so that the positive square root $\sqrt{N} \in \mathbb{Q}\left(2^{1 / 3}\right)$?
15. Give an example of two different algebraically closed fields E and F, such that E is a subfield of F.
16. Give an example of a unique factorization domain which is not a principal ideal domain.
17. Give an example of a ring R and a prime ideal $I \subseteq R$ which is not maximal.
