Qualifying Exam: Analysis

Name: \qquad

1. (3+3 points) Let $E \subset X, E \neq \emptyset, X$.
(a) Find the σ-algebra $\mathcal{M}=\mathcal{M}(\mathcal{F})$ that is generated by $\mathcal{F}=\{E\}$.
(b) What functions $f: X \rightarrow \mathbb{C}$ are measurable if we use this σ-algebra on X (and the Borel algebra on \mathbb{C})?
2. (5 points) Let μ, ν be finite Borel measures on \mathbb{R} and assume that

$$
\mu((a, \infty))=\nu((a, \infty)) \quad \text { for all } a \in \mathbb{R}
$$

Show that then $\mu(B)=\nu(B)$ for all Borel sets $B \subset \mathbb{R}$.
Suggestion: Use the regularity of these measures and the fact that open subsets of \mathbb{R} are countable disjoint unions of open intervals.
3. (3 points) Let μ be a measure on (X, \mathcal{M}) and let $f: X \rightarrow[0, \infty]$ be a non-negative measurable function. Prove that then

$$
\nu(E)=\int_{E} f(x) d \mu(x)
$$

defines a new measure on (X, \mathcal{M}).
4. (3 points) Let $f \in L^{1}(\mathbb{R})$. Show that then

$$
g(t)=\int_{-\infty}^{\infty} f(x) \sin x t d x
$$

is a continuous function on \mathbb{R}.
5. (7 points) Evaluate

$$
\int_{0}^{\infty} d x \int_{1}^{\infty} d y e^{-(1+i) x y^{2}}
$$

You will probably apply the Fubini-Tonelli Theorem here; please justify this carefully (don't just give the formal calculation).
6. (5 points) Let ν be the Borel measure on \mathbb{R} that is generated by the increasing, right-continuous function

$$
F(x)= \begin{cases}0 & x<0 \\ 1+2 x & x \geq 0\end{cases}
$$

(so $\nu((-\infty, x])=F(x))$. Find the Lebesgue decomposition of ν with respect to Lebesgue measure $\mu=m$, and determine the Radon-Nikodym derivative of the absolutely continuous part of ν.
7. $(2+2+3+4$ points) For what $p(1 \leq p \leq \infty)$ are the following functions in $L^{p}(0, \infty)$:
(a) $f(x)=\frac{x}{x+1}$;
(b) $f(x)=\frac{1}{(x+1)^{1 / 2}}$;
(c) $f(x)=\frac{e^{-x}}{x^{1 / 2}}$;
(d) $f(x)=\sum_{n=1}^{\infty} n \chi_{\left(n, n+2^{-n}\right)}(x)$
8. (4 points) Let $F: \mathbb{R} \rightarrow \mathbb{C}$ be absolutely continuous with $F^{\prime} \in L^{p}(\mathbb{R}), 1 \leq$ $p<\infty$. Show that there exists a constant $C>0$ so that

$$
|F(x)-F(y)| \leq C|x-y|^{\alpha} \quad(x, y \in \mathbb{R})
$$

with $\alpha=1-1 / p$.
9. ($3+4$ points) (a) Let $x_{j} \in[0,1]$, and suppose that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j=1}^{N} f\left(x_{j}\right) \text { exists for all } f \in C[0,1] . \tag{1}
\end{equation*}
$$

Prove that then there exists a positive Borel measure μ on $[0,1]$, with $\mu([0,1])=$ 1 , so that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j=1}^{N} f\left(x_{j}\right)=\int_{[0,1]} f(x) d \mu(x)
$$

for all $f \in C[0,1]$.
(b) Show that if $x_{j} \rightarrow x \in[0,1]$, then (1) holds. What measure μ is obtained in this case?

Please give complete arguments and use good mathematical notation.

