Qualifying Exam: Analysis

Name:....

- (3+3 points) Let E ⊂ X, E ≠ Ø, X.
 (a) Find the σ-algebra M = M(F) that is generated by F = {E}.
 (b) What functions f : X → C are measurable if we use this σ-algebra on X (and the Borel algebra on C)?
- 2. (5 points) Let μ , ν be finite Borel measures on \mathbb{R} and assume that

$$\mu((a,\infty)) = \nu((a,\infty))$$
 for all $a \in \mathbb{R}$.

Show that then $\mu(B) = \nu(B)$ for all Borel sets $B \subset \mathbb{R}$.

Suggestion: Use the regularity of these measures and the fact that open subsets of \mathbb{R} are countable disjoint unions of open intervals.

3. (3 points) Let μ be a measure on (X, \mathcal{M}) and let $f : X \to [0, \infty]$ be a non-negative measurable function. Prove that then

$$\nu(E) = \int_E f(x) \, d\mu(x)$$

defines a new measure on (X, \mathcal{M}) .

4. (3 points) Let $f \in L^1(\mathbb{R})$. Show that then

$$g(t) = \int_{-\infty}^{\infty} f(x) \sin xt \, dx$$

is a continuous function on \mathbb{R} .

5. (7 points) Evaluate

$$\int_0^\infty dx \int_1^\infty dy \, e^{-(1+i)xy^2}.$$

You will probably apply the Fubini-Tonelli Theorem here; please justify this carefully (don't just give the formal calculation).

6. (5 points) Let ν be the Borel measure on \mathbb{R} that is generated by the increasing, right-continuous function

$$F(x) = \begin{cases} 0 & x < 0\\ 1 + 2x & x \ge 0 \end{cases}$$

(so $\nu((-\infty, x]) = F(x)$). Find the Lebesgue decomposition of ν with respect to Lebesgue measure $\mu = m$, and determine the Radon-Nikodym derivative of the absolutely continuous part of ν .

7. (2+2+3+4 points) For what $p \ (1 \le p \le \infty)$ are the following functions in $L^p(0,\infty)$:

(a)
$$f(x) = \frac{x}{x+1}$$
; (b) $f(x) = \frac{1}{(x+1)^{1/2}}$;
(c) $f(x) = \frac{e^{-x}}{x^{1/2}}$; (d) $f(x) = \sum_{n=1}^{\infty} n\chi_{(n,n+2^{-n})}(x)$

8. (4 points) Let $F : \mathbb{R} \to \mathbb{C}$ be absolutely continuous with $F' \in L^p(\mathbb{R})$, $1 \le p < \infty$. Show that there exists a constant C > 0 so that

$$|F(x) - F(y)| \le C|x - y|^{\alpha} \qquad (x, y \in \mathbb{R}),$$

with $\alpha = 1 - 1/p$.

9. (3+4 points) (a) Let $x_j \in [0, 1]$, and suppose that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{j=1}^{N} f(x_j) \text{ exists for all } f \in C[0,1].$$
(1)

Prove that then there exists a positive Borel measure μ on [0, 1], with $\mu([0, 1]) = 1$, so that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{j=1}^{N} f(x_j) = \int_{[0,1]} f(x) \, d\mu(x)$$

for all $f \in C[0, 1]$.

(b) Show that if $x_j \to x \in [0, 1]$, then (1) holds. What measure μ is obtained in this case?

Please give complete arguments and use good mathematical notation.