Qualifying Exam - Algebra, August 2008

Full marks for complete answers to any six questions.
Show all work fully and clearly.
Good luck!

1. Suppose that a group G acts on a set X.
a. What does it mean to say the action is transitive?
b. Assuming that the action is transitive, suppose that a normal subgroup H of G fixes a point $x_{0} \in X$, i.e., $h . x_{0}=x_{0}$, for all $h \in H$. Show that H fixes every point of X, i.e., $h . x=x$, for all $h \in H$ and all $x \in X$.
2. a. Prove that there is no simple group of order 160 .
b. Let G be a finite group with Sylow p-subgroup P (for some prime p). Prove that $N_{G}\left(N_{G}(P)\right)=N_{G}(P)$.
3. a. What does it mean to say that a group is i) solvable, ii) nilpotent?
b. Let F be a field with more than two elements. Consider the subgroup M of $G L(2, F)$ given by

$$
M=\left\{\left[\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right]: a, b \in F, a \neq 0\right\}
$$

Show that M is solvable but not nilpotent.
4. a. Let R be a commutative ring and let \mathfrak{a} and \mathfrak{b} be distinct maximal ideals of R. Prove that $R / \mathfrak{a b} \cong R / \mathfrak{a} \times R / \mathfrak{b}$ as rings.
b. Let F be a field with char $F \neq 2$. By using a, or otherwise, show that $F[x] /\left(x^{2}-1\right) \cong F \times F$ as rings.
5. Let R be a ring in which $x^{2}=x$, for all $x \in R$.
a. Prove that R is commutative.
b. Let \mathfrak{p} be a prime ideal in R. Prove that $R / \mathfrak{p} \cong \mathbb{F}_{2}$, the finite field with two elements.
6. a. Let F be a finite field and let n be a positive integer. Prove that $F[x]$ contains an irreducible polynomial of degree n.
b. Determine all primes p for which $x^{2}+1$ is irreducible in $\mathbb{F}_{p}[x]$ (where \mathbb{F}_{p} denotes the finite field with p elements).
7. a. Let K / F be a finite Galois extension of fields with Galois group G. Let H be a subgroup of G. Show that there is an $\alpha \in K$ such that $H=\{\sigma \in G: \sigma(\alpha)=\alpha\}$.
b. Give an example, with justification, of a finite extension of fields that is not separable.
8. a. Show that $\mathbb{Q}(\sqrt{-1}, \sqrt[4]{2}) / \mathbb{Q}$ is a Galois extension and determine its Galois group.
b. Show that $\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q}$ is a Galois extension and determine its Galois group.
9. Let K / F be a Galois extension of fields such that $\operatorname{Gal}(K / F) \cong A_{4}$, the alternating group on 4 letters.
a. Prove that there is a unique cubic intermediate field, i.e., a unique field K_{1} such that $F \subset K_{1} \subset K$ and $\left[K_{1}: F\right]=3$.
b. Prove that there is no quadratic intermediate field, i.e., there is no field K_{1} such that $F \subset K_{1} \subset K$ and $\left[K_{1}: F\right]=2$.
10. a. Prove that \mathbb{Q} is not a free \mathbb{Z}-module.
b. Let $\mathbb{Q}_{\text {pos }}^{\times}$denote the multiplicative group of positive rational numbers. Prove that $\mathbb{Q}_{\text {pos }}^{\times}$is a free \mathbb{Z}-module.

