Name:....

- 1. (3 points) Let μ be a σ -finite measure on (X, \mathcal{M}) with $\mu(X) = \infty$. Show that for every C > 0, there exists an $E \in \mathcal{M}$ so that $C < \mu(E) < \infty$.
- 2. (3+3 points) Let f ∈ L¹(X, dµ).
 (a) Show that {x ∈ X : |f(x)| > 0} is a σ-finite set (that is, it can be written as a countable union of sets of finite measure).
 (b) Show that it is possible to have

$$\mu(\{x \in X : |f(x)| > 0\}) = \infty$$

(please give a concrete example of a function $f \in L^1$ on a space X where this happens).

- 3. (2+2+2+2 points) Consider the functions $f_n = n^2 \chi_{(0,1/n)}$ (note that $f_n \in L^1(\mathbb{R})$). Does the sequence f_n converge
 - (a) pointwise almost everywhere?
 - (b) in L^{1} ?
 - (c) in measure?
 - (d) in $\mathcal{D}'(\mathbb{R})$?

In those cases where it does converge, please also identify the limit.

4. (5 points) Consider the increasing, right-continuous function

$$F(x) = \begin{cases} 0 & x < 0\\ 1 + x & x \ge 0 \end{cases},$$

and let $\nu = \nu_F$ be the associated Borel measure on \mathbb{R} , as in Section 1.5. Find the Lebesgue decomposition (see Theorem 3.8) of ν with respect to:

- (a) $\mu = m;$
- (b) $\mu = \delta$, the Dirac measure at 0;
- (c) the Cantor measure μ .

In other words, write ν as $\nu = \rho + \lambda$ with $\rho \ll \mu$, $\lambda \perp \mu$. Please clearly identify the measures λ, ρ in each case.

5. (3 points) Let $E \subset \mathbb{R}^n$ be a Borel set with m(E) > 0. Show that for every $\epsilon > 0$, there exists an open ball B = B(r, x) so that

$$m(E \cap B) \ge (1 - \epsilon)m(B).$$

6. (5 points) Let $f \in L^1(\mathbb{R})$. Prove that

$$\int_{-1}^{1} \widehat{f}(\xi) e^{2\pi i \xi x} \, d\xi = (f * D)(x),$$

where

$$D(t) = \frac{\sin 2\pi t}{\pi t}.$$

Please don't just give the formal calculation; carefully justify all steps. Suggestion: Use the definition of the Fourier transform and then Fubini-Tonelli to evaluate the resulting iterated integral.

- 7. (3+3 points) Please give an example of a function $f : (0, \infty) \to \mathbb{C}$ with the following properties:
 - (a) $f \in L^p(0,\infty)$ for $2 \le p \le \infty$, but $f \notin L^p(0,\infty)$ if $1 \le p < 2$;
 - (b) $f \in L^p(0,\infty)$ for 2 , but not for p outside this range
- 8. (3+3 points) Let μ_n be a sequence of finite Borel measures on [0, 1].
 (a) Suppose that

$$\lim_{n \to \infty} \int_{[0,1]} f(x) \, d\mu_n(x)$$

exists for every $f \in C[0, 1]$. Show that then there exists another finite Borel measure μ on [0, 1] so that

$$\lim_{n \to \infty} \int_{[0,1]} f(x) \, d\mu_n(x) = \int_{[0,1]} f(x) \, d\mu(x)$$

for all $f \in C[0, 1]$. (b) Show that

$$\mu_n = \frac{1}{n} \sum_{j=1}^n \delta_{j/n}$$

satisfies the assumptions from part (a) (δ_x denotes the Dirac measure at x), and identify the limit measure μ .

9. (3+4 points) (a) Let $F_n, F \in \mathcal{D}'(\mathbb{R})$. Show that if $F_n \to F$ in $\mathcal{D}'(\mathbb{R})$, then also $F'_n \to F'$ in $\mathcal{D}'(\mathbb{R})$. (b) Let $E \in S'(\mathbb{R}^n)$. Show that

(b) Let $F \in \mathcal{S}'(\mathbb{R}^n)$. Show that

$$\widehat{\partial^{\alpha}F} = (2\pi i x)^{\alpha} \widehat{F}.$$

10. (4 points) Let $F \in \mathcal{D}'(\mathbb{R})$ be the distribution generated by the L^1_{loc} function $F(x) = \ln |x|$. Prove that (in $\mathcal{D}'(\mathbb{R})$)

$$F' = \mathrm{PV} - \frac{1}{x}.$$

(Recall that this latter distribution was defined as

$$\left\langle \mathrm{PV} - \frac{1}{x}, \phi \right\rangle = \lim_{y \to 0+} \int_{|x| > y} \frac{\phi(x)}{x} \, dx.$$

Hint: As the first step, show that if f is a bounded measurable function, then

$$\lim_{y \to 0+} \int_{-y}^{y} f(x) \ln |x| \, dx = 0$$

Then use this fact and integration by parts to compute $\langle F', \phi \rangle$.

Please give complete arguments and use good mathematical notation.