Qualifying Exam Real Analysis

August, 2007

Name: .

_ID# .

ATTENTION! Do any 6 of the following 7 problems. Circle the problems you submit for grading.

1.

- a). Define: Set E is Lebesgue measurable in \mathbb{R} .
- b). Prove: If E_1 and E_2 are Lebesgue measurable, then so is $E_1 \cup E_2$.
- c). Prove: Lebesgue measurable sets form an algebra.

2. State and prove Riesz-Fischer Theorem.

3.

- a). State and prove Kakutani-Krein Theorem.
- b). State and prove Stone-Weierstrass theorem.

4.

- a). Define: μ is a signed measure on X.
- b). State Hahn Decomposition Theorem.
- c). State Jordan Decomposition Theorem.
- d). State and prove Lebesgue Decomposition Theorem.

5. State and prove Riesz Representation Theorem for the dual of $L^p(X)$, $1 \le p < \infty$.

6.

- a). Define: F is a positive linear functional on C(X).
- b). Prove: If X is a compact metric space and $F \in [C(X)]^*$, then there exist positive linear functionals F^+ and F^- on C(X) such that $F = F^+ F^-$

and $||F|| = F^+(1) + F^-(1)$.

7. Let X be a compact metric space. State and prove Riesz-Markov Theorem for the dual of C(X).