Qualifying Exam
 Real Analysis

August, 2007
\qquad
Name:
ID\#

ATTENTION! Do any 6 of the following 7 problems. Circle the problems you submit for grading.
1.
a). Define: Set E is Lebesgue measurable in \mathbb{R}.
b). Prove: If E_{1} and E_{2} are Lebesgue measurable, then so is $E_{1} \cup E_{2}$.
c). Prove: Lebesgue measurable sets form an algebra.
2. State and prove Riesz-Fischer Theorem.
3.
a). State and prove Kakutani-Krein Theorem.
b). State and prove Stone-Weierstrass theorem.
4.
a). Define: μ is a signed measure on X.
b). State Hahn Decomposition Theorem.
c). State Jordan Decomposition Theorem.
d). State and prove Lebesgue Decomposition Theorem.
5. State and prove Riesz Representation Theorem for the dual of $L^{p}(X), 1 \leq p<\infty$.
6.
a). Define: F is a positive linear functional on $C(X)$.
b). Prove: If X is a compact metric space and $F \in[C(X)]^{*}$, then there exist positive linear functionals F^{+}and F^{-}on $C(X)$ such that

$$
F=F^{+}-F^{-}
$$

and $\|F\|=F^{+}(1)+F^{-}(1)$.
7. Let X be a compact metric space. State and prove Riesz-Markov Theorem for the dual of $C(X)$.

