Algebra Qualifying Exam

August 2007, University of Oklahoma

1. Let $\zeta=e^{2 \pi i / 10}$. Analyze the representation $\mathbb{Q}(\zeta) / \mathbb{Q}$: Show that it is a Galois extension, find the degree, find the minimal polynomial of ζ over \mathbb{Q}, determine the Galois group, determine the number of intermediate fields, and describe all intermediate fields explicitly.
2. Let E / F be a Galois extension of degree 100. Show that there is a unique intermediate field M of degree 4 over F, and that M is Galois over F.
3. For a prime number p let $\mathbb{F}_{p^{n}}$ be the field with p^{n} elements.
a) List all intermediate fields of the extension $\mathbb{F}_{p^{12}} / \mathbb{F}_{p}$. Draw a diagram illustrating all inclusions between these fields.
b) Determine the number of elements α of $\mathbb{F}_{p^{12}}$ such that $\mathbb{F}_{p^{12}}=\mathbb{F}_{p}(\alpha)$.
4. Consider the polynomial ring $\mathbb{Z}[X]$.
a) Let $I=\left\{a_{0}+a_{1} X+\ldots+a_{n} X^{n} \in \mathbb{Z}[X]: \sum_{i=0}^{n}(-1)^{i} a_{i}=0\right\}$. Show that I is an ideal. Is it a prime ideal? A maximal ideal?
b) For a prime number p let $J=\left\{a_{0}+a_{1} X+\ldots+a_{n} X^{n} \in \mathbb{Z}[X]: \sum_{i=0}^{n}(-1)^{i} a_{i} \in p \mathbb{Z}\right\}$. Show that J is an ideal. Is it a prime ideal? A maximal ideal?
5. Let G be any group. A character of G is a homomorphism $\varphi: G \rightarrow \mathbb{C}^{\times}$. Let \hat{G} be the set of all characters of G.
a) Define, in a natural way, on \hat{G} a composition law that makes \hat{G} into a group. Verify the group axioms.
b) Determine the group of characters for $G=\mathbb{Z}$.
c) Let H be the commutator subgroup of G, i.e., the subgroup generated by all elements of the form $x y x^{-1} y^{-1}, x, y \in G$. Let $G^{\text {ab }}=G / H$. Show that for a given character φ of G there exists a character $\tilde{\varphi}$ of $G^{\text {ab }}$ such that the diagram

is commutative.
6. A matrix $M \in M(n \times n, \mathbb{C})$ is called nilpotent if $M^{k}=0$ for some $k \geq 0$. Let S be the set of all nilpotent matrices in $M(n \times n, \mathbb{C})$.
a) Show that the group $G=\mathrm{GL}(n, \mathbb{C})$ acts on S via conjugation.
b) In the case $n=5$, determine the number of orbits for this action and list one representative from each orbit.
7. Let \mathbb{F}_{p} be the field with p elements.
a) Determine the number of elements of $\mathrm{GL}\left(2, \mathbb{F}_{p}\right)$.
b) Determine the number of elements of the subgroup P of $\mathrm{GL}\left(4, \mathbb{F}_{p}\right)$ consisting of all matrices of the form

$$
\left[\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
0 & 0 & * & * \\
0 & 0 & * & *
\end{array}\right] .
$$

c) Show that the subgroup U of $\operatorname{GL}\left(4, \mathbb{F}_{p}\right)$ consisting of all matrices of the form

$$
\left[\begin{array}{llll}
1 & * & * & * \\
0 & 1 & * & * \\
0 & 0 & 1 & * \\
0 & 0 & 0 & 1
\end{array}\right]
$$

is a Sylow p-subgroup of P.
8. Let G be a finite group and $P<G$ a Sylow p-subgroup. Let $N_{G}(P)$ be the normalizer of P in G. Let $H<G$ be a subgroup containing $N_{G}(P)$. Prove that $N_{G}(H)=H$.

