Algebra Qualifying Exam

August 2007, University of Oklahoma

1. Let $\zeta = e^{2\pi i/10}$. Analyze the representation $\mathbb{Q}(\zeta)/\mathbb{Q}$: Show that it is a Galois extension, find the degree, find the minimal polynomial of ζ over \mathbb{Q} , determine the Galois group, determine the number of intermediate fields, and describe all intermediate fields explicitly.

2. Let E/F be a Galois extension of degree 100. Show that there is a unique intermediate field M of degree 4 over F, and that M is Galois over F.

- **3.** For a prime number p let \mathbb{F}_{p^n} be the field with p^n elements.
 - a) List all intermediate fields of the extension $\mathbb{F}_{p^{12}}/\mathbb{F}_p$. Draw a diagram illustrating all inclusions between these fields.
 - b) Determine the number of elements α of $\mathbb{F}_{p^{12}}$ such that $\mathbb{F}_{p^{12}} = \mathbb{F}_p(\alpha)$.
- **4.** Consider the polynomial ring $\mathbb{Z}[X]$.
 - a) Let $I = \{a_0 + a_1X + \ldots + a_nX^n \in \mathbb{Z}[X] : \sum_{i=0}^n (-1)^i a_i = 0\}$. Show that I is an ideal. Is it a prime ideal? A maximal ideal?
 - b) For a prime number p let $J = \{a_0 + a_1X + \ldots + a_nX^n \in \mathbb{Z}[X] : \sum_{i=0}^n (-1)^i a_i \in p\mathbb{Z}\}$. Show that J is an ideal. Is it a prime ideal? A maximal ideal?

5. Let G be any group. A *character* of G is a homomorphism $\varphi : G \to \mathbb{C}^{\times}$. Let \hat{G} be the set of all characters of G.

- a) Define, in a natural way, on \hat{G} a composition law that makes \hat{G} into a group. Verify the group axioms.
- b) Determine the group of characters for $G = \mathbb{Z}$.
- c) Let H be the commutator subgroup of G, i.e., the subgroup generated by all elements of the form $xyx^{-1}y^{-1}$, $x, y \in G$. Let $G^{ab} = G/H$. Show that for a given character φ of G there exists a character $\tilde{\varphi}$ of G^{ab} such that the diagram

is commutative.

6. A matrix $M \in M(n \times n, \mathbb{C})$ is called *nilpotent* if $M^k = 0$ for some $k \ge 0$. Let S be the set of all nilpotent matrices in $M(n \times n, \mathbb{C})$.

- a) Show that the group $G = \operatorname{GL}(n, \mathbb{C})$ acts on S via conjugation.
- b) In the case n = 5, determine the number of orbits for this action and list one representative from each orbit.

7. Let \mathbb{F}_p be the field with p elements.

- a) Determine the number of elements of $GL(2, \mathbb{F}_p)$.
- b) Determine the number of elements of the subgroup P of $GL(4, \mathbb{F}_p)$ consisting of all matrices of the form

$$\begin{bmatrix} * & * & * & * \\ * & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{bmatrix}.$$

c) Show that the subgroup U of $\mathrm{GL}(4,\mathbb{F}_p)$ consisting of all matrices of the form

[1	*	*	*
0	1	*	*
0	0	1	*
0	0	0	1

is a Sylow p-subgroup of P.

8. Let G be a finite group and P < G a Sylow p-subgroup. Let $N_G(P)$ be the normalizer of P in G. Let H < G be a subgroup containing $N_G(P)$. Prove that $N_G(H) = H$.