• Do all the problems <u>in the right order</u>.

1. Let Y be a Hausdorff space; and $f, g: X \longrightarrow Y$ be continuous maps. Suppose f = g on a subset A of X which is dense in X. Prove that f = g on X.

2. Let $\{x_n : n = 1, 2, 3, \dots\}$ be a sequence of points in a topological space X, converging to x_0 . Prove that the set $K = \{x_n : n = 0, 1, 2, 3, \dots\}$ is compact.

3. For each $\alpha \in J$, let X_{α} be a topological space with topology \mathfrak{T}_{α} . Let $X = \prod_{\alpha \in J} X_{\alpha}$ be given the product topology, and let $\pi_{\alpha} : X \to X_{\alpha}$ denote the projection map. Prove that a function $f: Y \to X$ is continuous if each $\pi_{\alpha} \circ f$ is continuous.

4. Let C be the set of all continuous real-valued functions on [0, 1]. For each $f \in C$ and $\epsilon > 0$, define

$$\begin{split} M(f,\epsilon) &= \{g \in C : \int_0^1 |f-g| < \epsilon\}\\ U(f,\epsilon) &= \{g \in C : \sup_{x \in [0,1]} |f(x) - g(x)| < \epsilon\} \end{split}$$

- (1) Prove that $\mathfrak{M} = \{M(f, \epsilon) : f \in C, \epsilon > 0\}$ forms a basis for a topology.
- (2) Compare the two topologies generated by \mathfrak{M} and $\mathfrak{U} = \{U(f, \epsilon) : f \in C, \epsilon > 0\},\$

5. Let $\mathfrak{A} = \{A_{\alpha} : \alpha \in J\}$ be a locally-finite collection of closed covering of a space X. Let $f : X \to Y$ be a function, and suppose $f|_{A_{\alpha}}$ (restriction of f to A_{α}) is continuous for each $\alpha \in J$. Prove that f is continuous.

6. Let *D* be the unit disk in \mathbb{R}^2 with the subspace topology. We identify all the boundary points of *D* (to one point *p*), and give the quotient topology to the resulting quotient set *Q*. Prove that *Q* is homeomorphic to the sphere S^2 . Pay special attention to the local neighborhood system of *Q* at the point *p*.

7. Let X be a locally compact Hausdorff space. For a space Y, the set of all continuous maps from X to Y is denoted by C(X,Y). It has the compact-open topology. Prove the map $e: X \times C(X,Y) \to Y$ defined by

$$e(x,f) = f(x)$$

is continuous.

8. Given a path f in a space X from x_0 to x_1 , let \overline{f} be the path in X defined by $\overline{f}(s) = f(1-s)$. Prove that $f * \overline{f}$ is homotopic to the constant path e_{x_0} at x_0 .

9. (a) State Seifert-van Kampen theorem (classical version, to be applied to the next question). (b) Use (a) to calculate the fundamental group of the following space: A space A is a torus with an open disk D removed. Let $f : \partial B \to \partial A$ be a map from the boundary of a 2-ball B to the boundary of A winding twice (that is, double covering map from a circle to a circle). Let X be the space joining the 2-cell B by the map f. What is the fundamental group of X?

10. Let $p: (E, e_0) \to (B, b_0)$ be a covering map. Let $f: (Y, y_0) \to (B, b_0)$ be a continuous map. Suppose Y is path connected and locally path connected. If $f_*(\pi_1(Y, y_0)) \subset p_*(\pi_1(E, e_0))$, the f can be lifted to a map $\tilde{f}: (Y, y_0) \to (E, e_0)$.

12. The group $E(2) = \mathbb{R}^2 \rtimes O(2)$ (where O(2) is the orthogonal group) is $\mathbb{R}^2 \times O(2)$ as sets, but the group operation is given by $(a, A) \cdot (b, B) = (a + Ab, AB)$.

(a) E(2) acts on the space \mathbb{R}^2 by $(a, A) \cdot x = a + Ax$ for $x \in \mathbb{R}^2$. Show this actually defines an action. (b) Let π be the subgroup of E(2) generated by the 3 elements $(e_1, I), (e_2, I)$ and (a, A), where

$$e_1 = \begin{bmatrix} 1\\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0\\ 1 \end{bmatrix}, \quad I = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}, \quad a = \begin{bmatrix} \frac{1}{2}\\ 0 \end{bmatrix}, \text{ and } A = \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix}.$$

Show π contains a subgroup \mathbb{Z}^2 of index 2.

(c) Is the action of π on \mathbb{R}^2 free?

(d) Identify the orbit space \mathbb{R}^2/π . Explain how you derive the conclusion.