Algebra Qualifying Exam

May 2007, University of Oklahoma

1. Let $\zeta=e^{2 \pi i / 8}$. Analyze the representation $\mathbb{Q}(\zeta) / \mathbb{Q}$: Show that it is a Galois extension, find the degree, find the minimal polynomial of ζ over \mathbb{Q}, determine the Galois group, and describe all intermediate fields explicitly.
2. Let E / F be a Galois extension of degree 99 . Show that there is a unique intermediate field M of degree 11 over F, and that M is Galois over F.
3. For a prime number p let $\mathbb{F}_{p^{n}}$ be the field with p^{n} elements.
a) List all intermediate fields of the extension $\mathbb{F}_{p^{10}} / \mathbb{F}_{p}$.
b) Show that $\mathbb{F}_{p^{10}}$ contains exactly $p\left(p^{9}-p^{4}-p+1\right)$ elements α such that $\mathbb{F}_{p^{10}}=\mathbb{F}_{p}(\alpha)$.
c) Determine the number of monic, irreducible polynomials of degree 10 with coefficients in \mathbb{F}_{p}.
4. Consider the polynomial ring $\mathbb{Z}[X]$.
a) Let $I=\left\{a_{0}+a_{1} X+\ldots+a_{n} X^{n} \in \mathbb{Z}[X]: a_{0}+\ldots+a_{n}=0\right\}$. Show that I is an ideal. Is it a prime ideal? A maximal ideal?
b) For a prime number p let $J=\left\{a_{0}+a_{1} X+\ldots+a_{n} X^{n} \in \mathbb{Z}[X]: a_{0}+\ldots+a_{n} \in p \mathbb{Z}\right\}$. Show that J is an ideal. Is it a prime ideal? A maximal ideal?
5. Let G be an abelian group, and let $H \subset G$ be the subset of all elements of finite order.
a) Show that H is a subgroup of G.
b) Show that every element of G / H except the identity element has infinite order.
c) In the case $G=\left\{z \in \mathbb{C}^{\times}:|z|=1\right\}$, show that H is isomorphic to the additive group \mathbb{Q} / \mathbb{Z}.
6. A matrix $M \in M(n \times n, \mathbb{C})$ is called idempotent if $M^{2}=M$. Let S be the set of all idempotent matrices in $M(n \times n, \mathbb{C})$.
a) Show that the group $G=\operatorname{GL}(n, \mathbb{C})$ acts on S via conjugation.
b) Determine the number of orbits for this action.
7. Let \mathbb{F}_{p} be the field with p elements.
a) Determine the number of elements of $\operatorname{GL}\left(2, \mathbb{F}_{p}\right)$.
b) Determine the number of elements of $\operatorname{SL}\left(2, \mathbb{F}_{p}\right)$.
c) Find a Sylow p-subgroup of $\operatorname{GL}\left(2, \mathbb{F}_{p}\right)$.
8. Let G be a finite group and $P<G$ a Sylow p-subgroup. Let $N_{G}(P)$ be the normalizer of P in G. Let $H<G$ be a subgroup containing $N_{G}(P)$. Prove that $N_{G}(H)=H$.
