Department of Mathematics M.A. Comprehensive/Ph.D. Qualifying Exam in Analysis Summer 2006

1. For any subset E of \mathbf{R} and any k > 0, define $kE = \{y \in \mathbf{R} : y = kx \text{ for some } x \in E\}$. (a) Show that $|kE|_e = k|E|_e$. (Here $|E|_e$ denotes the Lebesgue outer measure of E.) (b) Show that E is measurable if and only if kE is measurable.

2. (a) State Fatou's Lemma.

(b) Suppose $\{f_n\}$ is a sequence of measurable functions in L^p , with $||f_n||_p \leq 1$ for all n, and suppose $\{f_n(x)\}$ converges to f(x) for almost every $x \in \mathbf{R}$. Prove that $f \in L^p$ and $||f||_p \leq 1$.

(c) Show that the following statement is FALSE: "If $\{f_n\}$ is a sequence in $L^1(\mathbf{R})$, then $\int_{-\infty}^{\infty} (\liminf f_n) \leq \liminf (\int_{-\infty}^{\infty} f_n)$." Hint: consider $f_n(x) = \begin{cases} -1 & \text{for } x \in [n, n+1] \\ 0 & \text{for } x \notin [n, n+1]. \end{cases}$

- **3.** Suppose $\{f_n\}$ is a sequence of measurable functions which converges in measure to f on a measurable set E, and $\{g_n\}$ is a sequence of measurable functions which converges in measure to g on E. Show that if $h_n = f_n + g_n$, then $\{h_n\}$ converges in measure to f + g on E.
- 4. Suppose f is measurable on **R** and $|f(x)| < \infty$ for almost every $x \in \mathbf{R}$. Prove that there exists a measurable subset E of **R** such that |E| > 0 and f is bounded on E. (Here |E| denotes the Lebesgue measure of E.)
- **5.** Suppose f is absolutely continuous on \mathbf{R} .

(a) Show that if $Z \subseteq \mathbf{R}$ and |Z| = 0, then |f(Z)| = 0.

(b) Show that if $E \subseteq \mathbf{R}$ and E is measurable, then f(E) is measurable. Hint: first show that if f is continuous and E is open (or closed), then f(E) is measurable.

6. Suppose f is measurable on **R** and $\int_{-\infty}^{\infty} |tf(t)| dt < \infty$. Prove that for almost every x > 0,

$$\frac{d}{dx}\int_{-\infty}^{\infty}\sin(xt)f(t)\ dt = \int_{-\infty}^{\infty}t\cos(xt)f(t)\ dt.$$

Justify your calculations carefully, using theorems about the Lebesgue integral. Hint: Start with the fact that $\sin(xt) = t \int_0^x \cos(st) \, ds$.

- 7. Suppose $\{f_n\}$ and $\{g_n\}$ are sequences in L^2 , and f and g are functions in L^2 , such that:
 - (i) $\lim ||f_n f|| = 0$,
 - (ii) there exists M > 0 such that $||g_n|| \leq M$ for all $n \in \mathbf{N}$, and
 - (iii) $\lim \langle g_n, h \rangle = \langle g, h \rangle$ for all $h \in L^2$.

Prove that $\lim \langle f_n, g_n \rangle = \langle f, g \rangle$.

- 8. Suppose S is a set with infinitely many elements, and let \mathcal{A} be the collection of all subsets E of S such that either E or S E is finite.
 - (a) Show that if E_1 and E_2 are in \mathcal{A} , then $E_1 \cup E_2$ is in \mathcal{A} .
 - (b) Show that if E is in \mathcal{A} , then S E is in \mathcal{A} .
 - (c) Show that \mathcal{A} is not a σ -algebra.