Department of Mathematics

M.A. Comprehensive/Ph.D. Qualifying Exam in Analysis

Spring 2006

1. (a) Show that if $\int_{E} f^{2} d x \leq 1$, then $\int_{E}|f| d x \leq|E|^{1 / 2}$.
(b) Let f_{j} be functions defined on a set E of finite measure. Assume that f_{j} converges pointwise almost everywhere to a function f on E, and that $\int_{E} f_{j}^{2} d x \leq 1$ for all j. Show that

$$
\lim _{j \rightarrow \infty} \int_{E}\left|f_{j}-f\right| d x=0
$$

2. Let f be the Cantor-Lebesgue function on $[0,1]$. (Thus f is strictly increasing on the Cantor set C and f is constant on each of the intervals in $[0,1]-C$.) Let the function $g:[0,1] \rightarrow[0,1]$ be defined by setting $g(y)$ equal to the smallest number x such that $f(x)=y$.
(a) Show that g is measurable.
(b) Show that there exists a measurable set $E \subset[0,1]$ such that $g^{-1}(E)$ is not measurable. (You may assume the existence of a non-measurable set in $[0,1]$.)
3. Show that

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{e^{-x / n} \sin (x / n)}{1+x^{2}} d x=0
$$

4. Suppose $K(x, y)$ is a measurable function on \mathbf{R}^{2}, and $f(y)$ is a measurable function on \mathbf{R}.
(a) Show that for all $x \in \mathbf{R}$, if $1<p<\infty$ then

$$
\int_{-\infty}^{\infty}|K(x, y) f(y)| d y \leq\left[\int_{-\infty}^{\infty}|K(x, y)||f(y)|^{p} d y\right]^{1 / p}\left[\int_{-\infty}^{\infty}|K(x, y)| d y\right]^{1 / p^{\prime}}
$$

(b) Suppose there exists a constant $C>0$ such that

$$
\int_{-\infty}^{\infty}|K(x, y)| d x \leq C \quad \text { for all } x \in \mathbf{R}
$$

and

$$
\int_{-\infty}^{\infty}|K(x, y)| d y \leq C \quad \text { for all } y \in \mathbf{R}
$$

Show that if $f \in L^{p}(1<p<\infty)$, and $g(x)$ is defined for $x \in \mathbf{R}$ by

$$
g(x)=\int_{-\infty}^{\infty} K(x, y) f(y) d y
$$

then the integral defining g exists for a.e. x, and $g \in L^{p}$.
5. Suppose f and g are functions on \mathbf{R}^{n} such that for all $\alpha \in \mathbf{R}$,

$$
|\{x:|f(x)|>\alpha\}|=|\{x:|g(x)|>\alpha\}| .
$$

Show that $\|f\|_{p}=\|g\|_{p}$ for all $0<p<\infty$.
6. Let $\left\{\phi_{k}\right\}$ be an orthonormal basis for L^{2}, and let $\left\{b_{k}\right\}$ be a bounded sequence of numbers. Show that for every $f \in L^{2}$ there exists $g \in L^{2}$ such that $\left\langle g, \phi_{k}\right\rangle=b_{k}\left\langle f, \phi_{k}\right\rangle$ for all k.
7. Suppose $\left\{\phi_{i}(x)\right\}_{i \in \mathbf{N}}$ is an orthonormal basis for $L^{2}(\mathbf{R})$. For each ordered pair $(i, j) \in$ $\mathbf{N} \times \mathbf{N}$, define $w_{i j}$ on \mathbf{R}^{2} by $w_{i j}(x, y)=\phi_{i}(x) \phi_{j}(y)$. Prove that $\left\{w_{i j}\right\}_{(i, j) \in \mathbf{N} \times \mathbf{N}}$ is an orthonormal basis for $L^{2}(\mathbf{R} \times \mathbf{R})$.
8. Let $\left\{f_{n}\right\}$ be a sequence of absolutely continuous functions on $[a, b]$. Suppose that f_{n} converges pointwise to a function f on $[a, b]$, and f_{n}^{\prime} converges in L^{1} norm to a function g on $[a, b]$. Prove that f is absolutely continuous on $[a, b]$ and that $f^{\prime}=g$ a.e. on $[a, b]$.
9. Let Σ be a σ-algebra of subsets of S, and let μ be a measure on Σ. Define Σ_{0} to be the collection of all subsets B of S such that for some set A in Σ and some sets Z_{1} and Z_{2} in Σ with $\mu\left(Z_{1}\right)=\mu\left(Z_{2}\right)=0$,

$$
A-Z_{1} \subset B \subset A \cup Z_{2}
$$

Show that Σ_{0} is a σ-algebra of subsets of S.

