Department of Mathematics M.A. Comprehensive/Ph.D. Qualifying Exam in Analysis Spring 2006

1. (a) Show that if $\int_E f^2 dx \leq 1$, then $\int_E |f| dx \leq |E|^{1/2}$. (b) Let f_j be functions defined on a set E of finite measure. Assume that f_j converges pointwise almost everywhere to a function f on E, and that $\int_E f_j^2 dx \leq 1$ for all j. Show that

$$\lim_{j \to \infty} \int_E |f_j - f| \, dx = 0.$$

- 2. Let f be the Cantor-Lebesgue function on [0, 1]. (Thus f is strictly increasing on the Cantor set C and f is constant on each of the intervals in [0, 1] C.) Let the function $g: [0, 1] \rightarrow [0, 1]$ be defined by setting g(y) equal to the smallest number x such that f(x) = y.
 - (a) Show that g is measurable.

(b) Show that there exists a measurable set $E \subset [0, 1]$ such that $g^{-1}(E)$ is not measurable. (You may assume the existence of a non-measurable set in [0, 1].)

3. Show that

$$\lim_{n \to \infty} \int_0^\infty \frac{e^{-x/n} \sin(x/n)}{1+x^2} \, dx = 0.$$

4. Suppose K(x, y) is a measurable function on \mathbf{R}^2 , and f(y) is a measurable function on \mathbf{R} .

(a) Show that for all $x \in \mathbf{R}$, if 1 then

$$\int_{-\infty}^{\infty} |K(x,y)f(y)| \, dy \le \left[\int_{-\infty}^{\infty} |K(x,y)| |f(y)|^p \, dy\right]^{1/p} \left[\int_{-\infty}^{\infty} |K(x,y)| \, dy\right]^{1/p'}$$

(b) Suppose there exists a constant C > 0 such that

$$\int_{-\infty}^{\infty} |K(x,y)| \, dx \le C \quad \text{for all } x \in \mathbf{R}$$

and

$$\int_{-\infty}^{\infty} |K(x,y)| \, dy \le C \quad \text{for all } y \in \mathbf{R}.$$

Show that if $f \in L^p$ (1 , and <math>g(x) is defined for $x \in \mathbf{R}$ by

$$g(x) = \int_{-\infty}^{\infty} K(x, y) f(y) \, dy,$$

then the integral defining g exists for a.e. x, and $g \in L^p$.

5. Suppose f and g are functions on \mathbf{R}^n such that for all $\alpha \in \mathbf{R}$,

$$|\{x: |f(x)| > \alpha\}| = |\{x: |g(x)| > \alpha\}|.$$

Show that $||f||_p = ||g||_p$ for all 0 .

- **6.** Let $\{\phi_k\}$ be an orthonormal basis for L^2 , and let $\{b_k\}$ be a bounded sequence of numbers. Show that for every $f \in L^2$ there exists $g \in L^2$ such that $\langle g, \phi_k \rangle = b_k \langle f, \phi_k \rangle$ for all k.
- 7. Suppose $\{\phi_i(x)\}_{i\in\mathbb{N}}$ is an orthonormal basis for $L^2(\mathbb{R})$. For each ordered pair $(i, j) \in \mathbb{N} \times \mathbb{N}$, define w_{ij} on \mathbb{R}^2 by $w_{ij}(x, y) = \phi_i(x)\phi_j(y)$. Prove that $\{w_{ij}\}_{(i,j)\in\mathbb{N}\times\mathbb{N}}$ is an orthonormal basis for $L^2(\mathbb{R}\times\mathbb{R})$.
- 8. Let $\{f_n\}$ be a sequence of absolutely continuous functions on [a, b]. Suppose that f_n converges pointwise to a function f on [a, b], and f'_n converges in L^1 norm to a function g on [a, b]. Prove that f is absolutely continuous on [a, b] and that f' = g a.e. on [a, b].
- **9.** Let Σ be a σ -algebra of subsets of S, and let μ be a measure on Σ . Define Σ_0 to be the collection of all subsets B of S such that for some set A in Σ and some sets Z_1 and Z_2 in Σ with $\mu(Z_1) = \mu(Z_2) = 0$,

$$A - Z_1 \subset B \subset A \cup Z_2.$$

Show that Σ_0 is a σ -algebra of subsets of S.