Algebra qualifying exam

August 2005

1. Let G be a p-group (i.e. $|G|=p^{n}$, p-prime, $n \in \mathbb{N}$) and Z be the center of G. Prove that $Z \neq\{e\}$.
2. Let G be a finite group. Suppose that G has a normal subgroup N whose order $|N|$ and index $[G: N]$ are relatively prime. Show that N is the only subgroup of G of order $|N|$.
3. Let L be a linear operator on a finite dimensional vector space V. Prove that there exists a decomposition $V=U \oplus W$ where each summand is L-invariant, $\left.L\right|_{U}$ is nilpotent and $\left.L\right|_{W}$ is non-singular.
4. If p is a prime number, prove that the polynomial $x^{n}-p$ is irreducible over the rational numbers.
5. Let M be a (left) module over a (commutative) principal ideal domain \mathcal{A}, and for each $m \in M$ let

$$
I_{m}=\{a \in \mathcal{A} \mid a m=0\} .
$$

Prove
a) I_{m} is an ideal of \mathcal{A}.
b) $M_{t}=\left\{m \in M \mid I_{m} \neq 0\right\}$ is a submodule of M.
c) If $p \in \mathcal{A}$ is prime and $p^{i} m=0$, then $I_{m}=\left(p^{j}\right)$, with $0 \leq j \leq i$.
6. In $\mathbb{Z}[x]$, let $I=\{f(x) \in \mathbb{Z}[x] \mid f(0)=2 m, m \in \mathbb{Z}\}$. Is I a prime ideal of $\mathbb{Z}[x]$? Is I a maximal ideal?
7. Let F be a finite field of characteristic p. Suppose $F \subset F(\alpha)$, where $\alpha^{p} \in F$. Show that $[F(\alpha): F]$ is equal to 1 or p.
8. Suppose that K is an extension field of F and $a \in K$ is algebraic. If the degree of the minimal polynomial of a is odd, show that $F\left(a^{2}\right)=F(a)$.

