
Topology Qualifying Examination
May, 2005

Instructions: Try to give complete arguments, but do not spend excessive time verifying obvious details,
especially when giving examples. Apply major theorems when possible.

All metric spaces are assumed to have the metric topology. All products of topological spaces are assumed
to have the product topology. The spaces I = [0, 1], R and Rn are assumed to have their standard metrics
and topologies. In any problem involving fundamental groups or covering maps, it is assumed that all spaces
involved are connected, locally path-connected, semilocally simply-connected, and Hausdorff.

Part A. Try to do all of these problems.

1. Let f : X → Y be a function between topological spaces. Prove that f is continuous if and only if for
every x and every open neighborhood V of f(x), there exists an open neighborhood U of x such that
f(U) ⊆ V .

2. Prove that a subspace A of a space X is dense if and only if its complement X −A has empty interior.

3. Give examples of each of the following, without verification.

(a) A connected space that is not path-connected.

(b) A path-connected space that is not locally connected.

(c) A metrizable space that is not locally compact.

(d) A sequence of functions from I to I which converges pointwise but not uniformly.

(e) A connected Hausdorff space which is not second countable.

4. Let p : E → B be a covering map. Prove that if E is compact, then p−1(b) is finite for every b ∈ B.

5. A subset U of R is called scattered if U = ∪∞i=1Ui where each Ui is a (nonempty) open interval, and
Ui ∩ Uj = ∅ if i 6= j. Let B be the collection of all scattered subsets of R. Prove that B is a basis for
the standard topology on R.

6. Find all the compact connected surfaces which have at least three boundary circles and have Euler
characteristic −5.

7. Let M be a connected n-manifold whose universal covering space is Rn. Prove that for any k ≥ 2, any
continuous map from Sk to M is homotopic to a constant map.

8. Let X be a topological space and suppose that X = ∪∞i=1Xi with Xi ⊆ Xi+1 for each i.

(a) Prove that if each Xi is path-connected, then X is path-connected.

(b) Give an example where X is path-connected although no Xi is path-connected.

(c) Prove that if each Xi is an open subset of X, and f : C → X is a continuous map with C compact,
then f(C) ⊆ XN for some N .

(d) Prove that if each Xi is simply-connected and is an open subset of X, then X is simply-connected.

9. Let C(R, R) be the space of continuous functions from R to R, with the compact-open topology. Prove
that the subspace B(R, R) consisting of the bounded functions is a dense subset of C(R, R).

10. Let x0 ∈ A ⊆ X, and let i : A → X be the inclusion. Prove that if there exists a retraction r : X → A,
then i# : π1(A, x0) → π1(X, x0) is injective.
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Part B. Do as many of these problems as you can.

1. Let j1, j2 : [0, 1] → Rn be imbeddings. Suppose that {j1(1)} = {j2(0)} = j1(I) ∩ j2(I). Prove that
there exists a continuous map f : Rn − {j1(1)} → R such that f ◦ j1(x) = x for all x ∈ [0, 1) and
f ◦ j2(x) = x for all x ∈ (0, 1].

2. A continuous map f : X → R is called proper if f−1([−n, n]) is compact for each positive integer n. For
a proper f , define the two-point compactification of X relative to f to be the union Xf = X∪{x+, x−},
where x+ and x− are two distinct points not in X, with topology defined as follows: U is open in Xf

when U ∩X is open in U and moreover

(1) if x+ ∈ U then U contains f−1((r,∞)) for some r ∈ R, and
(2) if x− ∈ U then U contains f−1((−∞, r)) for some r ∈ R.

You do not need to verify that this defines a topology on X.

(a) Prove that if X is Hausdorff, then Xf is Hausdorff.
(b) Prove that Xf is compact.
(c) Give an example of a space X and two proper maps f, g : X → R such that Xf is not homeomor-

phic to Xg.

3. A covering space E of B = S1 ∨ S1 is shown at
the right. It continues in the same pattern to the
left and to the right forever. As usual, the sin-
gle arrows cover the circle which corresponds to
an element a ∈ π1(B, b0), and the double arrows
cover the other circle, which corresponds to an el-
ement b ∈ π1(B, b0). Write G for π1(B, b0) and
H for p#(π1(E, e0)). Regard the union of the sin-
gle arrow edges as R, with the double arrow edges
attached at the integers, and let the basepoint be
e0 = 0.

(a) Tell how one knows that the elements
. . . , a−1ba, b, aba−1, a2ba−2, . . . are in H.

(b) More generally, explain why an element am1
1 bn1

1 am1
2 bn2

2 · · · amk

k bnk

k of G is in H if and only if m1 +
m2 + · · ·+ mk = 0.

(c) Explain why the right cosets of H are Han, n ∈ Z.

(d) What is the group of covering transformations for this covering space? Why?

4. Let f : R2 → R be a continuous map such that f−1([−n, n]) is compact for each positive integer n.
Prove that f achieves either a minimum value or a maximum value. (Remark: As far as I know,
problem B2 above is not useful here.) Hint: One possible solution makes use of the fact that R2−D2

N

is connected, where D2
N is the disk of radius N centered at the origin.

5. Let {Xα}α∈A be a nonempty collection of topological spaces, with each Xα = R, and for each α let
πα :

∏
α∈A

Xα → Xα denote the projection map from the product to the factor Xα.

(a) Prove or give a counterexample: If C is a subset of
∏
α∈A

Xα whose projection to each Xα is a

closed bounded subset, then C is compact.

(b) Prove or give a counterexample: If C is a closed subset of
∏
α∈A

Xα whose projection to each Xα

is a closed bounded subset, then C is compact.
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