In the following m denotes the Lebesque measure on \mathbb{R} . If necessary we specify with m_x the variable with respect to which the integral is taken.

1) Let $f:[a,b] \to \mathbb{R}$ show that the function g defined by

$$g(y) = \sup_{\delta > 0} \inf_{|x-y| < \delta} f(x) \ (= \sup\{\inf\{f(x) \mid |x-y| < \delta\} \mid \delta > 0\})$$

is lower semicontinuous.

2) Let (f_n) be a sequence of measurable functions defined on \mathbb{R} such that $f_n \to f$ a.e. and $\int_{\mathbb{R}} |f_n| dm \to \int_{\mathbb{R}} |f| dm < \infty$ a) Show that for each measurable set E we have

$$\int_E f_n dm \to \int_E f dm$$

b) Is the statement still true if we require only $\int_{\mathbb{R}} f_n dm \to \int_{\mathbb{R}} f dm$. If not, provide a counterexample.

- 3) Let E be a measurable set in \mathbb{R} with $0 < m(E) < \infty$
 - a) Show that the function $\phi \colon \mathbb{R} \to \mathbb{R}$ given by

$$\phi(x) = \int_{\mathbb{R}} \chi_{E}^{-}(y) \chi_{E}^{-}(x+y) dm_{y}$$

is continuous.

γ

- b) Show that the set $F = \{x y \in \mathbb{R} \mid x, y \in E\}$ contains open neighborhoods of all $x \in \mathbb{R}$ for which $\phi(x) \neq 0$.
- 4) Let $f: \mathbb{R} \to \mathbb{R}$ be integrable show that we have

$$\int_{(y,y+1)} f dm \to 0 \text{ as } y \to \infty.$$

- 5) Let (X, \mathcal{B}) be a measurable space. Let μ and ν be to measures on \mathcal{B} , with $\mu > \nu$ a) Show that there is a measure λ on \mathcal{B} such that $\mu = \lambda + \nu$.
 - b) If ν is σ -finite show that λ is unique.
 - c) Show that there is always a smallest such measure λ , but that in general λ is not unique.
- 6) Let (X, \mathcal{B}, μ) be a complete measure space and let (f_n) be a sequence of measurable functions converging to f a.e.

a) Provide three different, additional sets of assumptions which would allow you to conclude

$$\lim_{n \to \infty} \int_X f_n d\mu = \int_X f d\mu \,.$$

b) Show that the Monotone Convergence Theorem implies the Lemma of Fatou.

7) Let (X, \mathcal{B}) be a measurable space and let μ and ν be two measures on \mathcal{B} . The measure ν is called μ -continuous if for all $\epsilon > 0$ there is an δ such that

$$(\mu(E) < \delta) \Rightarrow (\nu(E) < \epsilon).$$

If ν is finite show that ν is μ -continuous if and only if ν is absolutely continuous with respect to μ .

- 8) Show that a countable subset of \mathbb{R} has Hausdorff dimension zero.
- 9) (Work either a) or b)!)

a) Show that $\log |x|$ is not in $W^{1,1}((1,1))$.

b) Let μ be an invariant measure on the homogeneous space (X, G) and f a μ -integrable function on X. Show that for all $g \in G$ we have

$$\int_X f \circ g d\mu = \int_X f d\mu.$$