Do all the problems in the right order.

1. Let \(Y \) be a Hausdorff space; and \(f, g : X \to Y \) be continuous maps. Suppose \(f = g \) on a subset \(A \) of \(X \) which is dense in \(X \). Prove that \(f = g \) on \(X \).

2. Let \(\{x_n : n = 1, 2, 3, \cdots \} \) be a sequence of points in a topological space \(X \), converging to \(x_0 \). Prove that the set \(K = \{x_n : n = 0, 1, 2, 3, \cdots \} \) is compact.

3. For each \(\alpha \in J \), let \(X_\alpha \) be a topological space with topology \(\mathcal{T}_\alpha \). Let \(X = \prod_{\alpha \in J} X_\alpha \) be given the product topology, and let \(\pi_\alpha : X \to X_\alpha \) denote the projection map. Prove that a function \(f : Y \to X \) is continuous if each \(\pi_\alpha \circ f \) is continuous.

4. Let \(C \) be the set of all continuous real-valued functions on \([0, 1]\). For each \(f \in C \) and \(\epsilon > 0 \), define

\[
M(f, \epsilon) = \{g \in C : \int_0^1 |f - g| < \epsilon\}
\]

\[
U(f, \epsilon) = \{g \in C : \sup_{x \in [0,1]} |f(x) - g(x)| < \epsilon\}.
\]

1. Prove that \(\mathcal{M} = \{M(f, \epsilon) : f \in C, \epsilon > 0\} \) forms a basis for a topology.
2. Compare the two topologies generated by \(\mathcal{M} \) and \(\mathcal{U} = \{U(f, \epsilon) : f \in C, \epsilon > 0\} \).

5. Let \(\mathcal{A} = \{A_\alpha : \alpha \in J\} \) be a locally-finite collection of closed covering of a space \(X \). Let \(f : X \to Y \) be a function, and suppose \(f|_{A_\alpha} \) (restriction of \(f \) to \(A_\alpha \)) is continuous for each \(\alpha \in J \). Prove that \(f \) is continuous.

6. Let \(D \) be the unit disk in \(\mathbb{R}^2 \) with the subspace topology. We identify all the boundary points of \(D \) (to one point \(p \)), and give the quotient topology to the resulting quotient set \(Q \). Prove that \(Q \) is homeomorphic to the sphere \(S^2 \). Pay special attention to the local neighborhood system of \(Q \) at the point \(p \).

7. Let \(X \) be a locally compact Hausdorff space. For a space \(Y \), the set of all continuous maps from \(X \) to \(Y \) is denoted by \(C(X, Y) \). It has the compact-open topology. Prove the map \(e : X \times C(X, Y) \to Y \) defined by

\[
e(x, f) = f(x)
\]

is continuous.

8. Given a path \(f \) in a space \(X \) from \(x_0 \) to \(x_1 \), let \(\overline{f} \) be the path in \(X \) defined by \(\overline{f}(s) = f(1 - s) \). Prove that \(f + \overline{f} \) is homotopic to the constant path \(e_{x_0} \) at \(x_0 \).

9. (a) State Seifert–van Kampen theorem (classical version, to be applied to the next question).
 (b) Use (a) to calculate the fundamental group of the following space: A space \(A \) is a torus with an open disk \(D \) removed. Let \(f : \partial B \to \partial A \) be a map from the boundary of a 2-ball \(B \) to the boundary of \(A \) winding twice (that is, double covering map from a circle to a circle). Let \(X \) be the space joining the 2-cell \(B \) by the map \(f \). What is the fundamental group of \(X \)?

10. Let \(p : (E, e_0) \to (B, b_0) \) be a covering map. Let \(f : (Y, y_0) \to (B, b_0) \) be a continuous map. Suppose \(Y \) is path connected and locally path connected. If \(f_*(\pi_1(Y, y_0)) \subset p_*(\pi_1(E, e_0)) \), the \(f \) can be lifted to a map \(\tilde{f} : (Y, y_0) \to (E, e_0) \).
11. Let \(p : X \to B \) be a regular covering map; let \(G \) be its group of covering transformations (so that the action of \(G \) is properly discontinuous). Let \(\pi : X \to X/G \) be the projection map. Show that there is a homeomorphism \(k : X/G \to B \) such that \(k \circ \pi = p \).

\[\begin{array}{ccc}
X & \xrightarrow{\pi} & X \\
\downarrow & & \downarrow \pi \\
X/G & \xrightarrow{k} & B
\end{array} \]

12. The group \(E(2) = \mathbb{R}^2 \rtimes O(2) \) (where \(O(2) \) is the orthogonal group) is \(\mathbb{R}^2 \times O(2) \) as sets, but the group operation is given by \((a, A) \cdot (b, B) = (a + Ab, AB) \).

(a) \(E(2) \) acts on the space \(\mathbb{R}^2 \) by \((a, A) \cdot x = a + Ax \) for \(x \in \mathbb{R}^2 \). Show this actually defines an action.

(b) Let \(\pi \) be the subgroup of \(E(2) \) generated by the 3 elements \((e_1, I), (e_2, I)\) and \((a, A)\), where

\[e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad a = \begin{bmatrix} 1/2 \\ 0 \end{bmatrix}, \quad \text{and} \quad A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}. \]

Show \(\pi \) contains a subgroup \(\mathbb{Z}^2 \) of index 2.

(c) Is the action of \(\pi \) on \(\mathbb{R}^2 \) free?

(d) Identify the orbit space \(\mathbb{R}^2/\pi \). Explain how you derive the conclusion.