FALL 1999 HOMEWORK 13 - ANSWERS
$\S 11.7$ Questions $\mathbf{8 , 1 2 , 3 0 , 4 0 , 4 4 , 5 2 , 5 6 , 7 4 ;} \S 11.8$ Questions $4,6,10$
8.

t increases in the direction of increasing y.
12.

t increases in the direction of increasing x and y.
30. The domain comprises all values of t except -1 . Differentiation gives

$$
\mathbf{r}^{\prime}(t)=(2 t+1) e^{2 t} \mathbf{i}+\frac{2}{(t+1)^{2}} \mathbf{j}+\frac{1}{t^{2}+1} \mathbf{k}
$$

40.

Note that this is the graph of a hyperbola since $1+\tan ^{2} t=\sec ^{2} t$.
52. First we have to find s, t such that $t=3-s, 1-t=s-2,3+t^{2}=s^{2}$. It is easy to check that this implies $s=2, t=1$. Consequently the point of intersection is $(1,0,4)$. We next find the angle between their tangent vectors at this point. We have

$$
\mathbf{r}_{1}^{\prime}(t)=\mathbf{i}-\mathbf{j}+2 t \mathbf{k} \quad \mathbf{r}_{2}^{\prime}(s)=-\mathbf{i}+\mathbf{j}+2 s \mathbf{k} .
$$

Hence $\mathbf{r}_{1}^{\prime}(1)=\mathbf{i}-\mathbf{j}+2 \mathbf{k}$ and $\mathbf{r}_{2}^{\prime}(2)=-\mathbf{i}+\mathbf{j}+4 \mathbf{k}$. Hence $\mathbf{r}_{1}^{\prime}(1) \cdot \mathbf{r}_{2}^{\prime}(2)=6$. We also have $\left|\mathbf{r}_{1}^{\prime}(1)=\sqrt{6}\right|$ and $\left|\mathbf{r}_{2}^{\prime}(2)\right|=3 \sqrt{2}$. It follows that the required angle is $\cos ^{-1} \sqrt{1 / 3} \simeq 55^{\circ}$.
56. The intersection of the surfaces looks like this

The parametric equations of the curve are $x=t, y=t^{2}, z=\sqrt{4-t^{4}-t^{2} / 4}$. Its graph is shown below

74. Note that

$$
\frac{d}{d t} \mathbf{r}(t) \cdot \mathbf{r}(t)=2 \mathbf{r}(t) \cdot \mathbf{r}^{\prime}(t)=0
$$

Consequently $\mathbf{r}(t) . \mathbf{r}(t)$ is constant which implies $|\mathbf{r}(t)|$ is constant, as required.
4. We have $\mathbf{r}^{\prime}(t)=2 t \mathbf{i}+2 \mathbf{j}+(1 / t) \mathbf{k}$ and so the required length is

$$
\int_{1}^{e} \sqrt{4 t^{2}+4+\frac{1}{t^{2}}} d t=\int_{1}^{e}\left(\frac{1}{t}+2 t\right) d t=\left[\ln t+t^{2}\right]_{1}^{e}=e^{2} .
$$

6. The curve is

Its length is

$$
\int_{0}^{2 \pi} \sqrt{(-\sin t)^{2}+(3 \cos 3 t)^{2}+(\cos t)^{2}} d t=\int_{0}^{2 \pi} \sqrt{1+9 \cos ^{2} 3 t} d t \simeq 13.9744
$$

10. We have $\mathbf{r}^{\prime}(t)=-3 \cos ^{2} t \sin t \mathbf{i}+3 \sin ^{2} t \cos t \mathbf{j}-2 \sin 2 t \mathbf{k}$. Consequently

$$
\frac{d s}{d t}=\sqrt{9 \cos ^{4} t \sin ^{2} t+9 \sin ^{4} t \cos ^{2} t+4 \sin ^{2} 2 t}=\frac{5}{2} \sin 2 t
$$

It follows that

$$
s\left(t_{0}\right)=\int_{0}^{t_{0}} \frac{5}{2} \sin 2 t d t=\frac{5}{4}-\frac{5}{4} \cos t_{0}=\frac{5}{2} \sin ^{2} t .
$$

Therefore we have

$$
\sin ^{2} t=\frac{2 s}{5} \quad \cos ^{2} t=1-\frac{2 s}{5} \quad \cos 2 t=1-\frac{4 s}{5}
$$

The required reparameterization is

$$
\mathbf{r}(s)=\left(1-\frac{2 s}{5}\right)^{3 / 2} \mathbf{i}+\left(\frac{2 s}{5}\right)^{3 / 2} \mathbf{j}+\left(1-\frac{4 s}{5}\right) \mathbf{k}
$$

