Sp'14: MATH 1914–010	Differential and Integral Calculus I	Noel Brady
Friday 02/14/2014	Midterm I	50 minutes
Name:	Student ID:	

Instructions.

- 1. Attempt all questions.
- 2. Do not write on back of exam sheets. Extra paper is available if you need it.
- 3. Show all the steps of your work clearly.
- 4. No calculators, no notes, no books.

Question	Points	Your Score
Q1	25	
Q2	25	
Q3	13	
Q4	13	
Q5	12	
Q6	12	
TOTAL	100	

Q1][25 points] Suppose f is a function whose domain is all the real numbers. Consider the following expression involving inputs x and a .
f(x) - f(a)
$\frac{f(x)-f(a)}{f(a)}$
x-a

What is the expression above called?

Write down two interpretations of this expression.

Suppose that the following limit exists.

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

What is this limit called?

Write down two interpretations of this limit.

 $\mathbf{Q2}]\dots[\mathbf{25}\ \mathbf{points}]$ Compute the following limit. Show all the steps of your work.

$$\lim_{h \to 0} \frac{(3+h)^2 - 9}{h}$$

Use the value of the limit above to write down the equation of the tangent line to the graph $y = x^2$ at the point (3,9).

Q3]...[13 points] Suppose that $\cos(t) = 2/\sqrt{5}$ and that $-\pi/2 \le t \le 0$. Draw a picture showing the angle t, and then determine the values of $\sin(t)$ and $\cot(t)$.

 $\mathbf{Q4}]\dots[\mathbf{13}\ \mathbf{points}]$ Let f be the piecewise defined function

$$f(x) = \begin{cases} 2 & \text{if } x < 0 \\ x+1 & \text{if } x \ge 0 \end{cases}$$

Is f continuous at 0? Give reasons for your answer.

Q5]...[12 points] Suppose that f(x) is a function whose domain is all real numbers, and suppose that

$$\lim_{x \to 1} \frac{f(x) - 8}{x - 1} = 2014$$

Use the information above to find the following limit

$$\lim_{x \to 1} f(x)$$

Show the steps of your work.

 $\mathbf{Q6}]\dots[\mathbf{12}\ \mathbf{points}]$ Show that the equation

$$x^5 - x^3 + 3x - 5 = 0$$

has a solution in the interval (1,2). Give the name of any theorem from class notes that you use.

Q1]...[25 points] Suppose f is a function whose domain is all the real numbers. Consider the following expression involving inputs x and a.

$$\frac{f(x) - f(a)}{x - a}$$

What is the expression above called?

Write down two interpretations of this expression.

Suppose that the following limit exists.

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

What is this limit called?

Write down two interpretations of this limit.

(i) It is the slope of the tangent line to the graph
$$y = f(x)$$
 at the point (a, fa).

Q2]...[25 points] Compute the following limit. Show all the steps of your work.

$$\lim_{h \to 0} \frac{(3+h)^2 - 9}{h}$$

$$\lim_{h \to 0} \frac{(3+h)^2 - 9}{h}$$

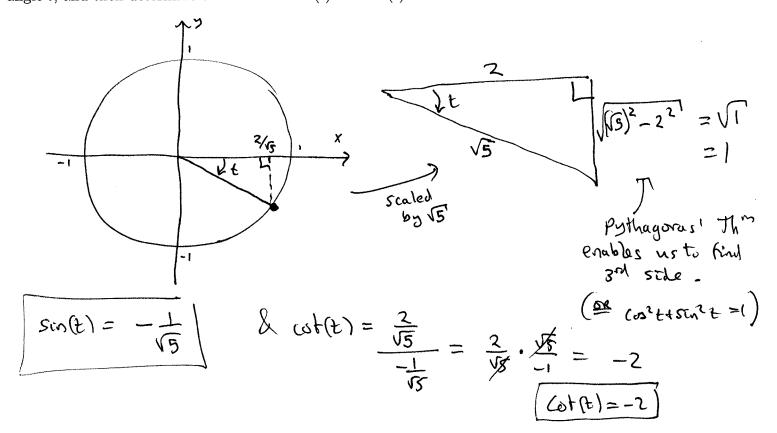
$$= \lim_{h \to 0} \frac{3^k + 2(3)h + h^2 - 9}{h}$$

$$= \lim_{h \to 0} \frac{(6+h)h}{h}$$

Use the value of the limit above to write down the equation of the tangent line to the graph $y = x^2$ at the point (3,9).

Slope of tangent line =
$$f'(3)$$
 = limit above!
= 6 .
Point is $(3, 9)$
=) Equation is $(y-9) = 6(x-3)$

Q3]...[13 points] Suppose that $\cos(t) = 2/\sqrt{5}$ and that $-\pi/2 \le t \le 0$. Draw a picture showing the angle t, and then determine the values of $\sin(t)$ and $\cot(t)$.



 $\mathbf{Q4}$]... $[\mathbf{13} \ \mathbf{points}]$ Let f be the piecewise defined function

$$f(x) = \begin{cases} 2 & \text{if } x < 0 \\ x+1 & \text{if } x \ge 0 \end{cases}$$

Is f continuous at 0? Give reasons for your answer.

No... In order for
$$f$$
 to be continuous at O

We would need

Lim $f(x) = f(0)$ to hald.

 $x \to 0$

But LHS of this equation does not exist! \Rightarrow equation doesn't hold true.

Why?

Because

Lim $f(x) = f(0)$ to hald.

 $x \to 0$
 $\Rightarrow f(x)$ not continuous ato.

Lim $f(x) = \lim_{x \to 0^{+}} (2) = 2$

Lim $f(x) = \lim_{x \to 0^{+}} (2) = 2$

Lim $f(x) = \lim_{x \to 0^{+}} (x + 1) = 0 + 1 = 1$

Lim $f(x) = \lim_{x \to 0^{+}} (x + 1) = 0 + 1 = 1$

Lim $f(x) = \lim_{x \to 0^{+}} (x + 1) = 0 + 1 = 1$

Q5]...[12 points] Suppose that f(x) is a function whose domain is all real numbers, and suppose that

$$\lim_{x \to 1} \frac{f(x) - 8}{x - 1} = 2014$$

Use the information above to find the following limit

$$\lim_{x \to 1} f(x)$$

Show the steps of your work.

$$\lim_{x \to 1} (f(x) - 8) = \lim_{x \to 1} \left(\frac{(f(x) - 8)}{(x - 1)} \right) - \lim_{x \to 1} (x - 1)$$

$$= \lim_{x \to 1} \left(\frac{f(x) - 8}{(x - 1)} \right) \cdot \lim_{x \to 1} (x - 1)$$

$$= \lim_{x \to 1} \left(\frac{f(x) - 8}{(x - 1)} \right) \cdot \lim_{x \to 1} (x - 1)$$

$$= \lim_{x \to 1} \left(\frac{f(x) - 8}{(x - 1)} \right) \cdot \lim_{x \to 1} (x - 1)$$

$$= \lim_{x \to 1} \left(\frac{f(x) - 8}{(x - 1)} \right) \cdot \lim_{x \to 1} (x - 1)$$

$$= \lim_{x \to 1} \left(\frac{f(x) - 8}{(x - 1)} \right) \cdot \lim_{x \to 1} (x - 1)$$

$$= \lim_{x \to 1} \left(\frac{f(x) - 8}{(x - 1)} \right) \cdot \lim_{x \to 1} (x - 1)$$

$$= \lim_{x \to 1} \left(\frac{f(x) - 8}{(x - 1)} \right) \cdot \lim_{x \to 1} (x - 1)$$

$$= \lim_{x \to 1} \left(\frac{f(x) - 8}{(x - 1)} \right) \cdot \lim_{x \to 1} (x - 1)$$

$$= \lim_{x \to 1} \left(\frac{f(x) - 8}{(x - 1)} \right) \cdot \lim_{x \to 1} (x - 1)$$

$$= \lim_{x \to 1} \left(\frac{f(x) - 8}{(x - 1)} \right) \cdot \lim_{x \to 1} (x - 1)$$

$$= \lim_{x \to 1} \left(\frac{f(x) - 8}{(x - 1)} \right) \cdot \lim_{x \to 1} (x - 1)$$

$$= \lim_{x \to 1} \left(\frac{f(x) - 8}{(x - 1)} \right) \cdot \lim_{x \to 1} (x - 1)$$

$$= \lim_{x \to 1} \left(\frac{f(x) - 8}{(x - 1)} \right) \cdot \lim_{x \to 1} (x - 1)$$

$$= \lim_{x \to 1} \left(\frac{f(x) - 8}{(x - 1)} \right) \cdot \lim_{x \to 1} (x - 1)$$

$$= \lim_{x \to 1} \left(\frac{f(x) - 8}{(x - 1)} \right) \cdot \lim_{x \to 1} (x - 1)$$

$$= \lim_{x \to 1} \left(\frac{f(x) - 8}{(x - 1)} \right) \cdot \lim_{x \to 1} (x - 1)$$

$$= \lim_{x \to 1} \left(\frac{f(x) - 8}{(x - 1)} \right) \cdot \lim_{x \to 1} (x - 1)$$

$$= \lim_{x \to 1} \left(\frac{f(x) - 8}{(x - 1)} \right) \cdot \lim_{x \to 1} (x - 1)$$

$$= \lim_{x \to 1} \left(\frac{f(x) - 8}{(x - 1)} \right) \cdot \lim_{x \to 1} (x - 1)$$

$$= \lim_{x \to 1} \left(\frac{f(x) - 8}{(x - 1)} \right) \cdot \lim_{x \to 1} (x - 1)$$

$$= \lim_{x \to 1} \left(\frac{f(x) - 8}{(x - 1)} \right) \cdot \lim_{x \to 1} (x - 1)$$

$$= \lim_{x \to 1} \left(\frac{f(x) - 8}{(x - 1)} \right) \cdot \lim_{x \to 1} (x - 1)$$

$$= \lim_{x \to 1} \left(\frac{f(x) - 8}{(x - 1)} \right) \cdot \lim_{x \to 1} (x - 1)$$

$$= \lim_{x \to 1} \left(\frac{f(x) - 8}{(x - 1)} \right) \cdot \lim_{x \to 1} (x - 1)$$

$$= \lim_{x \to 1} \left(\frac{f(x) - 8}{(x - 1)} \right) \cdot \lim_{x \to 1} (x - 1)$$

$$= \lim_{x \to 1} \left(\frac{f(x) - 8}{(x - 1)} \right) \cdot \lim_{x \to 1} (x - 1)$$

$$= \lim_{x \to 1} \left(\frac{f(x) - 8}{(x - 1)} \right) \cdot \lim_{x \to 1} (x - 1)$$

$$= \lim_{x \to 1} \left(\frac{f(x) - 8}{(x - 1)} \right) \cdot \lim_{x \to 1} (x - 1)$$

$$= \lim_{x \to 1} \left(\frac{f(x) - 8}{(x - 1)} \right) \cdot \lim_{x \to 1} (x - 1)$$

 $\mathbf{Q6}]\dots[\mathbf{12}\ \mathbf{points}]$ Show that the equation

$$x^5 - x^3 + 3x - 5 = 0$$

has a solution in the interval (1,2). Give the name of any theorem from class notes that you use.

Let
$$f(x) = x^5 - x^3 + 3x - 5$$

 $f(x)$ is continuous at all real numbers (polynomial)
 $f(1) = 1 - 1 + 3 - 5 = -2$ < 0
 $f(2) = 32 - 8 + 6 - 5 = 25 > 0$
By the Intermediate Value Theorem,
there is an input c between 1 & 2 (ie. in (12))
so that $f(c) = 0$. This is a solution to the equation.