
Chapter 6

Arithmetic of quaternion algebras

Here we’ll investigate some arithmetic properties and consequences of quaternion algebras.
Namely, we’ll try to get a more concrete understanding of orders and ideals in quaternion al-
gebras, including a class number formula and questions of factorization. We’ll also give some
applications to ternary and quaternary quadratic forms, with more impressive applications
to follow in Chapter 7.

The primary references are Vigneras [Vig80] and some papers of Pizer [Piz76], [Piz77],
[Piz80]. Note that some of what we do will be in greater generality than these references
(e.g., Pizer’s paper are just over Q and Vigneras restricts to Eichler orders for some things),
and some things we cover are not treated by Vigneras or Pizer.

Our focus is on explaining (some of) what is known and how to do concrete computations
rather than giving complete proofs. (In other words, I don’t have time to prove everything.
Proofs of some results, e.g. mass and class number formulas, involve a fair amount of auxiliary
material.)

Throughout this chapter, F is a local or global field of characteristic 0 unless stated
otherwise. The letter B will denote a quaternion algebra over F . If F is a p-adic or number
field, o

F

denotes the ring of integers of F , and O will be an order in B. (Unless stated
otherwise all orders are o

F

-orders, including the discussion of orders in other fields K which
contain F .) If F is a p-adic field, $ = $

F

is a uniformizer for F and p = $o
F

is the unique
maximal ideal in o

F

. If B is a p-adic division algebra, then $
B

, then O
B

denotes the unique
maximal order and P = $

B

O
B

denotes the unique maximal 2-sided ideal in O
B

.

6.1 Quaternionic orders

We have defined orders, ideals and (reduced) norms of ideals, ideal classes and class numbers
for central simple algebras. For the arithmetic of quaternion algebras, we will want a couple
more notions: discriminants and levels. We will define level below, first locally, then globally.
Now we give a uniform definition of discriminant.

Let F be a number or p-adic field, B/F be a quaternion algebra, and O an order of B.
The dual lattice to O is

O? = {↵ 2 B : tr(↵O) ⇢ o
F

} .

This is the algebraic notion of a dual space with respect to a bilinear form where the bilinear
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form is the trace form defined in Exercise 3.2.3.

Lemma 6.1.1. The dual O? is a 2-sided O-ideal and its inverse (O?)�1 is a 2-sided integral
ideal, called the different of O.

Exercise 6.1.1. Prove this lemma.

The discriminant discO of O is the (reduced) norm N((O?)�1) of the different of O,
i.e., the (integral) ideal of o

F

generated by N(x) for x 2 (O?)�1. In the cases F = Q or
F = Q

p

, n 2 N and discO = nZ or discO = nZ
p

, we sometimes simply say the discriminant
is n.

These definitions of different and discriminant are analogous to the case of number and
p-adic field extensions K/F : the dual lattice (ideal) a? of an ideal a ⇢ o

K

with respect to
the trace form is the inverse different and the norm of the different from K/F is shown to
to be the discriminant of a.

Recall that an order O is not necessarily a free o
F

-module. In general, it may not be if
F is a number field with class number > 1. However, O is free if o

F

is a PID, i.e., if F is
p-adic or h

F

= 1. In these cases, it is easier to compute discriminants:

Proposition 6.1.2. Suppose o
F

is a PID and O an order in B with o
F

-basis ↵
1

, . . . ,↵
4

as
a free module. Then discO = (det(↵

i

↵
j

)
i,j

)2.

Proof. See [Vig80, Lem I.4.7].

Proposition 6.1.3. Suppose O and O0 are orders of B. Then O ⇢ O0 implies discO ⇢
discO0, i.e., discO0| discO, with discO = discO0 if and only if O = O0.

Proof. See [Vig80, Cor I.4.8].

This proposition is useful in determining if an order is a maximal order, just like the
discriminant is a useful tool to determine if an order is the full ring of integers in a number
field. E.g., we will use this in Theorem 6.1.15 below.

Of course it may be that O and O0 have the same discriminant if one is not contained
in the other—this happens for instance when O and O0 conjugate orders. We’ll compute
discriminants for orders “with level” below, and see that the discriminant is the level. This
includes the case of maximal orders, and the discriminant will be independent of the choice
of a maximal order, and we will define the discriminant of these quaternion algebras to be
the discriminant of a maximal order.

Exercise 6.1.2. Let F = Q and B = HQ =
��1,�1

Q
�

, and consider the orders O =

Z[i, j, k] (the Lipschitz integers) and O0 = Z[i, j, 1+i+j+k

2

] (the Hurwitz integers). Using
Proposition 6.1.2, show discO = 4 and discO0 = 2.

Note this is compatible with Proposition 6.1.3. We will use this discriminant calculation
in Example 6.1.5 below to conclude the Hurwitz integers are a maximal order in HQ.
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6.1.1 Local orders

In this section, let F be a p-adic field and B be a quaternion algebra over F . Then, up to
isomorphism, either B = D (nonsplit) or B = M

2

(F ) (split), where D denotes the unique
quaternion division algebra over F . Here we summarize the theory of (a large class of)
o
F

-orders in B.
First we will describe the maximal orders.
Recall from Lemma 5.1.2, the unique quaternion division algebra D/F contains the

unique quadratic unramified field extension K = F (
p
u). Since $ is not a norm from K, by

Proposition 3.3.7, we can express

D =

✓

u,$

F

◆

=

⇢✓

↵ $�
� ↵

◆

: ↵,� 2 K

�

⇢ M
2

(K), (6.1.1)

where ↵ 7! ↵ denotes Galois conjugation in K/F .

Lemma 6.1.4. With D as in (6.1.1), the order in D given by

O
D

=

⇢✓

↵ $�
� ↵

◆

: ↵,� 2 o
K

�

,

consists of all o
F

-integral elements of D.

Proof. It is easy to see that O
D

is an order, so we will just check the integrality assertion.
Write ↵ = x+ y

p
u and � = z + w

p
u, where u 2 o⇥

F

is a nonsquare. Note the element

� =

✓

↵ $�
� ↵

◆

2 D is integral if and only if tr � = tr↵ = 2x 2 o
F

and det � = N↵�$N� 2

o
F

. Since K/F is unramified, the image of the norm map is precisely the set of elements of
even valuation, so det � 2 o

F

if and only if the “parts of even and odd valuation” N↵ and
$N� lie in o

F

, i.e., if and only if N↵, N� 2 o
F

, i.e., if and only if v(N↵) = 2v
K

(↵) � 0
and v(N�) = 2v

K

(�) � 0, i.e., if and only if ↵,� 2 o
K

.

For global applications, it will also useful to describe maximal orders in terms of real-
izations of D in M

2

(K) where K/F is a ramified quadratic extension.

Exercise 6.1.3. Let p be an odd rational prime, and u a nonsquare in Z⇥
p

. Let $ 2 {p, up}
and K = Q

p

(
p
$) the associated ramified quadratic extension. First check that the

quaternion division algebra D/Q
p

can be realized as the set of matrices
✓

↵ u�
� ↵

◆

, where

↵,� 2 K and bar denotes Galois conjugation in K. Then show the maximal order O
D

of
D is given by the set of such matrices with ↵,� 2 o

K

. (Recall Exercise 1.2.11.)

Theorem 6.1.5. When B = D, there is a unique maximal order O
D

, consisting of all
O

F

-integral elements. When B = M
2

(F ), any maximal order O
B

is GL
2

(F )-conjugate to
M

2

(O
F

).

Proof. The case of B = D follows from the above lemma together with Proposition 4.2.2.
It is also a special case of Theorem 4.3.2. When B = M

2

(F ), this is a special case of
Theorem 4.2.7. See also [Vig80, Sec 2.1, 2.2] or [MR03, Sec 6.4, 6.5] for complete proofs in
just the quaternionic setting.
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Example 6.1.1. Let g
n

=

✓

$n

1

◆

for some n 2 Z. Then O
n

= g
n

M
2

(O
F

)g�1

n

=
✓

O
F

pn

p�n O
F

◆

is a maximal order in M
2

(F ). (We essentially saw this in Example 4.2.5.)

Thus the maximal orders of B are easy to describe. What about non-maximal orders?
In the split case, we can construct other orders by intersecting two or more maximal orders.
Orders in B which are the intersection of two maximal orders play a special role in number
theory, and are called Eichler orders (cf. Section 4.2). The two maximal orders need not
be distinct, so Eichler orders include maximal orders.

Example 6.1.2. Let B = M
2

(F ) and recall O
n

from Example 6.1.1. Then O
B

(n) =

O
0

\ O�n

=

✓

O
F

O
F

pn O
F

◆

is an Eichler order for n � 0. We say this order is of level pn.

It arises often in the theory of modular forms.

Of course this idea of intersecting orders won’t give us anything so far in the nonsplit
case as there is only one maximal order. Still, one can construct something analogous in
terms of matrices to the order O

B

(n) in the split case.

Example 6.1.3. Let E/F be the unramified quadratic extension, so $ is still a uniformizer
for E. Then, as a vector space, we can write D = E � Ej for some j in D. In fact, we
may assume j is integral over o

F

and j2 = $. In matrix form, we may write

D =

⇢✓

↵ $�
� ↵

◆

: ↵,� 2 E

�

.

(So j =

✓

$
1

◆

in this representation.) Then consider lattice in D given by

O
D

(2n+ 1) = o
E

�$no
E

j =

⇢✓

↵ $�
� ↵

◆

: ↵ 2 o
E

,� 2 $no
E

�

for n � 0. A simple matrix computation shows this set is closed under multiplication, and
thus and order in D. We say this order has level p2n+1.

More generally, we define level as follows.

Definition 6.1.6. Let O be a o
F

-order in B. We say O has level pn (or level qn) if O is
isomorphic (as a ring and an o

F

-module) to O
B

(n). We write levO for the level of O.

As an aside, we remark that in the nonsplit setting, this means every order containing
the maximal unramified quadratic order has level:

Proposition 6.1.7. Let B be the nonsplit quaternion algebra D and O an order in B. Let
E/F be the unramified quadratic field extension. Then O ' O

D

(2n + 1) for some n if and
only if O contains o

E

for some embedding of E into B.
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Proof. See [Piz77, Prop 2.2] for a proof when F = Q. See [MR03, Exer 6.4.1] in the general
setting.

When B is split, the notion of level is only defined for Eichler orders.

Exercise 6.1.4. Let B = M
2

(F ). Show that any Eichler order O is conjugate to O
m

\O
n

for some m,n. Determine the level of O
m

\O
n

, i.e., the r such that O
m

\O
n

= O
B

(r).

The following exercise implies not all orders are Eichler orders.

Exercise 6.1.5. Let B = M
2

(F ). Show that an order O is an Eichler order if and only
if O contains o

F

� o
F

. Construct an order which is not Eichler order. (Suggestion: Take
the intersection of an Eichler order with another order.)

The first part of this exercise is due to Hijikata—see e.g. [Vig80, Lem II.2.4].
Proposition 6.1.8. Let O be an order in B of level pn. Then discO = pn.

Proof. First suppose B = M
2

(F ). Then we may assume O =

✓

o
F

o
F

pn o
F

◆

. Then it is easy

to check that O? =

✓

o
F

p�n

o
F

o
F

◆

. Then (O?)�1 is the set of
✓

a b
c d

◆

such that
✓

o
F

p�n

o
F

o
F

◆✓

a b
c d

◆✓

o
F

p�n

o
F

o
F

◆

⇢
✓

o
F

p�n

o
F

o
F

◆

,

and it is easy to check this means

(O?)�1 =

✓

pn o
F

pn pn

◆

,

which has norm (determinant) pn.
Next suppose B = D is division and O = O

D

(2m+ 1), where n = 2m+ 1. Let E/F be
the unramified quadratic extension, so we can realize

O =

⇢✓

↵ $�
� ↵

◆

: ↵ 2 o
E

,� 2 $mo
E

�

.

It is easy to see that

O? =

⇢✓

↵ $�
� ↵

◆

: ↵ 2 o?
E

,� 2 ($m+1o
E

)?
�

.

Since E/F is unramified, this means ↵ 2 o
E

and � 2 $�m�1o
E

. One checks the inverse of
O? is all matrices of the above form with ↵ 2 $2m+1o

E

and � 2 $mo
E

. This yields that
the discriminant is p2m+1.

Corollary 6.1.9. Let O be a maximal order in B. Then

levO = discO =

(

o
F

B ' M
2

(F )

p else.

Just like with the class number, we define the discriminant of B, denoted discB, to be
the discriminant of a maximal order of B.
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6.1.2 Global orders

Now let B be a quaternion algebra over a number field F . By an order in B, we mean an
o
F

-order in B. Recall that for a finite place v of F and O an order (or more generally an
o
F

-lattice) in B, the local completion O
v

= O ⌦o
F

o
F

v

. For a finite place v, denote the
associated integral ideal of o

F

by p
v

.

Proposition 6.1.10. Let O be an order in B. Then O is maximal (resp. Eichler) if and
only if O

v

is for each v < 1.

Recall the maximal part was a special case of Proposition 4.5.2, for which we outsourced
the proof. I’ll leave the proof to you (cf. [Vig80, Sec III.5]):

Exercise 6.1.6. Prove the above proposition.

Definition 6.1.11. Let O be an order in B and N an integral ideal in o
F

. We say O has
level N and write levO = N if, for each v < 1, O

v

has level pnv

v

o
F

v

and N =
Q

pnv

v

. If
F = Q, N 2 N, and O has level NZ, we simply say levO = N .

Thus the notion of level is a local notion, and it is defined if and only if O
v

is Eichler for
each finite place v such that B

v

is split. In particular, the notion of level makes sense if O
is an Eichler order, though it is defined for more general orders. Note that, from the case of
local nonsplit quaternion algebras, for any v such that B

v

is nonsplit, the level must be of
the form pnv

v

where n
v

is an odd positive integer.

Proposition 6.1.12. Let O be an order in B. Then discO =
Q

v<1 discO
v

.

Proof. See [Vig80, Cor III.5.2].

Corollary 6.1.13. Let O be an order in B with level N. Then discO = N.

Proof. This is an immediate consequence of the previous proposition and Proposition 6.1.8.

Example 6.1.4. Let F = Q, and B = M
2

(F ). Then O =

✓

Z Z
NZ Z

◆

has level and

discriminant N .

You might wonder why we have the notion of level at all if it agrees with discriminant
whenever level is defined. First, orders with level are easier to understand than arbitrary
orders. Second, it turns out that the orders with level are precisely the orders we want to
use when defining quaternionic modular forms.

Here is another consequence of the above proposition.

Corollary 6.1.14. Let O be an order in B. Then discO =
Q

p
v

where v runs over the
finite primes in Ram(B) if and only if O is a maximal order.
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Proof. If O is maximal, this is an immediate consequence of the above proposition and
Corollary 6.1.9. If O is not maximal, it lies in a maximal O0, and by Proposition 6.1.3 we
know discO 6= discO0.

In particular, the discriminant of maximal order does not depend upon the choice of the
maximal order and tells us precisely the finite ramification of B. Define the discriminant
discB of B to be the discriminant of a maximal order. Consequently, from our classification
results, if F = Q, then knowing discB together with whether B is definite or indefinite
determines B up to isomorphism.

Example 6.1.5. Let B = HQ =
��1,�1

Q
�

. Since Ram(B) = {2,1}, discB = 2. Hence an
order O in B is maximal if and only if discO = 2. In particular, the Hurwitz integers are
a maximal order in B by Exercise 6.1.2.

For rational quaternion algebras of prime discriminant, explicit descriptions of maximal
orders were given independently at about the same time by Pizer [Piz80] and by Hashimoto
[Has80]. The following formulation can be found in [Piz80].

Theorem 6.1.15. Let B be the definite quaternion algebra over Q ramified at p and infinity.
Then we can write B =

�

a,b

Q
�

and find a maximal order O according to the following cases:

(1) If p = 2, then B = HQ =
��1,�1

Q
�

and O = Zh1, i, j, 1+i+j+k

2

i is a maximal order.

(2) If p ⌘ 3 mod 4, then B =
��1,�p

Q
�

and O = Zh1, i, 1+j

2

, i+k

2

i is a maximal order.

(3) If p ⌘ 5 mod 8, then B =
��2,�p

Q
�

and O = Zh1, j, 1+j+k

2

, i+2j+k

4

i is a maximal order.

(4) If p ⌘ 1 mod 8, then B =
��p,�q

Q
�

where q is a prime that is 3 mod 4 and
�

p

q

�

= �1.
Moreover, if m 2 N such that q|(m2p+1), then O = Zhk, 1+j

2

, i+k

2

, j+mk

q

i is a maximal
order.

Proof. That the stated Hilbert symbol fits the bill can be deduced from the work in Sec-
tion 5.2. To check that the given order is maximal, by the latest corollary, it suffices to
check discO = p. We just illustrate details in the Case (1).

Assume Ram(B) = {2,1}. Since no odd primes are ramified in HQ =
��1,�1

Q
�

, we know
B ' HQ (cf. Exercise 5.2.3). Then discZhi, j, k 1+i+j+k

2

i by Exercise 6.1.2.

Exercise 6.1.7. Prove the above theorem when p ⌘ 3 mod 4.

Further results on explicit constructions of maximal orders for definite quaternion al-
gebras over Q are given in [Ibu82]. An algorithm for computing maximal orders over an
arbitrary number field is presented John Voight’s thesis [Voi05, Sec 4.3].

The next exercise describes some simple non-maximal orders in HQ.

153



QUAINT Chapter 6: Arithmetic of quaternion algebras Kimball Martin

Exercise 6.1.8. Let B = HQ =
��1,�1

Q
�

and m an odd integer. Show the Z-lattices
O

1,m

for m � 1 and O
2,m

for m � 3 in B with respective bases {1, i,mj,mk} and
n

1, i,mj, 1+i+mj+mk

2

o

are non-maximal orders in B.

Here is another way to explicitly construct (Eichler or maximal) orders. Our main goal
is to illustrate this method, so we will just do this under certain simplifying assumptions.

Proposition 6.1.16. Let B be a definite quaternion algebra over Q with Ram(B) = {p
1

, p
2

, . . . , p
r

}
such that d = p

1

· · · p
r

⌘ 7 mod 8. Let K = Q(
p
�d) and represent

B =

⇢✓

↵ b�
� ↵

◆

: ↵,� 2 K

�

,

where b 2 Z such that gcd(b, d) = 1 and
��d

p

�

= 1 for each p|b. Then

O =

⇢✓

↵ b�
� ↵

◆

: ↵,� 2 o
K

�

is an Eichler order in B of level
Q

p
i

·
Q

p|b p
v

p

(b).

Note in order for Ram(B) = {p
1

, . . . , p
r

}, there’s also a “hidden” condition that b is a
nonsquare mod each p

i

(cf. Exercise 5.1.3). As in the proof of Theorem 5.2.4 for F = Q,
Dirichlet’s theorem on primes in arithmetic progressions implies there always exists some
such b which is prime. If each p

i

⌘ 3 mod 4, then we can take b = �1 to get a maximal
order.

Proof. It suffices to show O
p

is a maximal order for each p - b, and Eichler of level pvp(b)
for each p|b. The conditions on d mean that Ram(K) = Ram(B) and 2 splits in K. The
conditions on b means that b 2 Z⇥

p

for any p such that K
p

/Q
p

is non-split.
First suppose p = p

i

for some i = 1, 2 . . . , r. Then K
p

/Q
p

is ramified and b 2 Z⇥
p

must
be a nonsquare, so O

p

is maximal by Exercise 6.1.3.
Now let’s consider a prime p such that K

p

/Q
p

is split. Then K
p

' Q
p

� Q
p

and
o
K

p

= o
K

⌦ Z
p

' Z
p

� Z
p

(Exercise 4.1.4), so

O
p

'
⇢✓

(x, y) b(z, w)
(w, z) (y, x)

◆

: x, y, z, w 2 Z
p

�

(cf. Exercise 3.1.4). We can identify these matrices of pairs with pairs of matrices (
✓

x bz
w y

◆

,

✓

y bw
z x

◆

),

and we see
O

p

'
⇢✓

x bz
w y

◆

: x, y, z, w 2 Z
p

�

,

which is an Eichler order of level pvp(b) in B
p

= M
2

(Q
p

).
Finally suppose p 62 Ram(B) such that K

p

/Q
p

is a field extension. Then by assumption
K

p

/Q
p

is the unique unramified quadratic extension and B
p

' M
2

(Q
p

). Since b 2 Z⇥
p

and
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K
p

/Q
p

is unramifed (or if you prefer, since B
p

'
��d,b

Q
p

�

is split), it must be that b is a norm
from o⇥

K

p

. Write b = uu for some u 2 o⇥
K

p

. Then making the substitution � 7! u�1�, we
have

B
p

=

⇢✓

↵ u�
u�1� ↵

◆

: ↵,� 2 K
p

�

,

and O
p

is the set of such matrices with ↵,� 2 o
K

p

. Letting g =

✓

p
�d �

p
�d

1 1

◆✓

u�1

1

◆

and writing ↵ = x+ y
p
�d, � = z + w

p
�d we compute

g

✓

↵ u�
u�1� ↵

◆

g�1 =

✓

x� z �d(y + w)
y � w x+ z

◆

.

This conjugation gives an explicit isomorphism of B
p

(realized as above) with M
2

(Q
p

) such
that

gO
p

g�1 = M
2

(Z
p

)

(cf. Exercise 1.2.11). Hence O
p

is a maximal order, as desired.

See also [Has95] for explicit construction of Eichler orders in indefinite rational quaternion
algebras.

6.2 Ideals

Recall from Section 4.4 our convention that (unless otherwise qualified) an ideal I of B
just means an o

F

-lattice in B. This will be a complete left (resp. right) fractional ideal for
O = O

l

(I) (resp. O = O
r

(I)). Recall an ideal I is called normal if its left (or equivalently
right) order is a maximal order in B.

Let F be a p-adic or number field. The (reduced) norm of an ideal I in B is the ideal
N(I) of F generated by the reduced norms N(↵) as ↵ runs over I. (This ideal norm was
already defined over number fields in a more general context in Section 4.4.) Even though
the collection of ideals of B do not form a group, we can multiply ideals of B and the norm
map is a multiplicative function from the set of (fractional) ideals of B to the group of
(fractional) ideals of F .

6.2.1 Local ideals

Let F be a p-adic field. Then B = D or B = M
2

(F ), where D is the unique quaternion
division algebra over F .

We recall that the ideals of the unique maximal order O
D

of D are easy to describe: they
are precisely the lattices of the form $n

D

O
D

= {x 2 B : v
D

(x) � n} for n 2 Z. These are all
two-sided ideals and their (one- and two-sided) class numbers are 1, which just means that
for any x 2 B, there is a unique n 2 Z such that x = u$n

B

= $n

B

u0 for some u, u0 2 O⇥
D

.
For B = M

2

(F ), all maximal orders are conjugate to the standard one, M
2

(o
F

). The
following describes the integral ideals in the standard maximal order.
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