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Abstract

The exterior square L-function attached to an automorphic cuspidal
representation of GL(2n) has a pole if and only if a certain period integral
does not vanish on the space of the representation. We conjecture, in the
“if” direction, a similar result is true for representations of GL(2, D),
where D is a division algebra. We prove a partial result which provides
evidence for the conjecture. The proof is based on a relative trace formula.
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1 Introduction

Let F be a number field, A its ring of adeles, and D a division algebra of
rank m2 over F . We regard D×, GLm, G = GL2(D), and G′ = GL2m as
algebraic groups defined over F . The multiplicative group F× of F is identified
with the center Z of each one of these groups. For an algebraic group H over
F and a place v of F , we will denote the group of its Fv-points by Hv. By
an automorphic representation of H(A), we will mean a subrepresentation of
L2(Z(A)H(F )\H(A)).

The Jacquet-Langlands correspondence associates to each automorphic rep-
resentation π of D×(A) an automorphic representation π′ of GLm(A) such that
πv ≃ π′

v at all places where D×
v ≃ GLm(Fv) [HT]. It is conjectured that there is

a similar Jacquet-Langlands correspondence between representations π of G(A)
and π′ of G′(A) (or more generally between any inner forms of GLn) such that
πv ≃ π′

v when Gv ≃ G′
v. A consequence of this conjecture is that multiplicity

one and strong multiplicity one theorems should hold for G. Such a correspon-
dence has been established when D is split at each infinite place [Ba].

Suppose π and π′ are cuspidal representations of G(A) and G′(A), respec-
tively, which satisfy the Jacquet-Langlands correspondence. Assume that π
satisfies multiplicity one and strong multiplicity one, i.e. if π0 is an automor-
phic representation of G(A) with πv ≃ π0

v for almost all v, then π = π0. The
purpose of this note is to illustrate how the relative trace formula may be used
to compare Shalika periods on π with those on π′.

Let S (resp. S′) be the subgroup of G (resp. G′) of elements of the form:
{(

A X
0 A

)}
=

{(
A 0
0 A

)(
I X
0 I

)}
=

{(
I X
0 I

)(
A 0
0 A

)}

where A ∈ D× (resp. GLm) and X ∈ D (resp. Mm×m). This is called the
Shalika subgroup of G (resp. G′). Let ψ be a non-trivial additive character of
A/F . Define a character θ on S(A) (resp. on S′(A)) by

θ

((
A 0
0 A

)(
I X
0 I

))
= ψ(tr(X)),

where tr denotes the reduced trace of D (resp. the trace on Mm×m). The
Shalika subgroup is unimodular, and a Haar measure on S(A) (resp. on S′(A))
is given by a product dAdX where dA and dX are both Haar measures on the
appropriate spaces.

We say that an automorphic representation π of D(A) is distinguished (by
θ), if it has trivial central character and the period integral

λ(φ) :=

∫

Z(A)S(F )\S(A)

φ(s)θ−1(s)ds
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is non-zero for some smooth function φ in the space of π. Note that the quotient
Z(A)S(F )\S(A) is compact, so the integral converges. Conjugating by a matrix
of the form

γ =

(
α · I 0

0 I

)
, α ∈ F×,

we see that if the condition of distinction is satisfied for π, it is also satisfied
with ψ replaced by the character x 7→ ψ(αx). Thus the condition is independent
of the choice of ψ.

We make the same definitions for S′ mutatis mutandis. We define a character
θ on S′(A) by

θ

((
A 0
0 A

)(
I X
0 I

))
= ψ(tr(X)),

Thus a cuspidal automorphic representation π′ is distinguished if and only if its
central character is trivial and the period integral

λ′(φ) :=

∫

Z(A)S′(F )\S′(A)

φ(s)θ−1(s)ds

is non-zero for at least one smooth element φ in the space of π′. Note that the
quotient Z(A)S′(F )\S′(A) has finite volume— it is the product of the volumes
of Z(A)GLm(F )\GLm(A) and Mm×m(F )\Mm×m(A). Since the cusp form φ is
bounded, the integral converges.

We conjecture that if π is distinguished, then π′ also is. The significance of
this is as follows. Recall that π′ is distinguished if and only if the exterior square
L−function L(s, π′; Λ2) attached to π′ has a pole at s = 1 ([BF], [JS], [Ji]). This
is proved using an integral representation of L(s, π′; Λ2). On the other hand,
there is no integral representation for the exterior square L−function L(s, π; Λ2)
attached to π. Nonetheless, according to the conjecture, the non-vanishing of
the period integral λ should imply the existence of a pole for L(s, π; Λ2).

Here we use a relative trace formula to establish the following partial result
in the case m = 2.

Theorem 1. Let D be a quaternion algebra which ramifies at at least one
infinite place. Suppose πv0

is supercuspidal for some finite place v0 where D
splits. If π is distinguished by θ, then the automorphic cuspidal representation
π′ of G′ corresponding to π is distinguished by θ′.

The assumptions on D at infinity and πv0
are purely technical assumptions

made to keep the trace formulas as simple as possible; specifically, we avoid the
need for truncation, whose details are presently unclear in this setting.

Subsequently, our conjecture has been proven for m = 2 by Gan and Takeda
using the theta correspondence [GT]. The authors remark, however, that their
method will not apply to higher rank. On the other hand, it is expected that
the trace formula approach we use here can be made completely general (with
considerable work). Separately, Jiang, Nien and Qin have proved our conjecture
(under some restrictions) for general n by a still different method [JNQ].
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It is natural to also ask if the converse direction to the conjecture is true,
for this would make equivalent the nonvanishing of a Shalika period on π with
the existence of a pole for L(s, π; Λ2). For now we will not discuss this question
but refer the reader to the paper of Gan and Takeda (loc. cit.).

We introduce some more notations. We write a matrix g of G or G′ in the
form

g =

(
A B
C D

)
.

Then we denote by P the parabolic subgroup of matrices for which C = 0, by
U the subgroup of those for which C = 0, A = B = I, by M the subgroup
of those for which C = 0, B = 0 and by H the subgroup of those for which
C = B = 0 and A = D. Thus S (resp. S′) is the semi-direct product of H
and U . Henceforth, we restrict ourselves to the situtation m = 2, i.e., D is a
quaternion algebra, G = GL2(D) and G′ = GL4.

Acknowledgements. We would like to thank Wee Teck Gan for explaining to
us his results with Shuichiro Takeda. The first author was partially supported
by NSF grant DMS-02-45310. The second author was partially supported by
NSF grant DMS-0402698.

2 Local Orbital Integrals for GL4

2.1 Relevant Double Cosets

Let F be any field, and S be the Shalika subgroup of G = GL4 over F . The
group S(F )×S(F ) operates on G(F ) by g 7→ s1gs

−1
2 . Denote by σ the algebraic

additive character σ : S → F defined by

σ

((
α 0
0 α

)(
I X
0 I

))
= tr(X) .

We say that an element ξ is relevant if the algebraic character of S × S,

(u1, u2) 7→ σ(u1) − σ(u2),

is trivial on the stabilizer of ξ. It amounts to the same to require that

σ(ξsξ−1) = σ(s)

on the group Sξ := S ∩ ξ−1Sξ.
Let us write the elements of GL4 in the form

g =

(
A B
C D

)
.

Recall P is the parabolic subgroup of G of matrices for which C = 0. Any
double coset of S is contained in a double coset of P . There are 3 double cosets
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of P . The rank of C determines the double coset PgP . If C = 0 then g is in P .
If C is invertible then g lies in the double coset of

w :=

(
0 I
I 0

)
.

Finally, if C has rank 1 then g is in the double coset of

w0 :=





0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0



 .

Now we come back to the double S-coset of an element g. If C = 0 then the
double coset of g contains an element of the form

ξ =

(
I 0
0 γ

)
.

Then Sξ is the group of matrices of the form

(
A X
0 A

)
,

The element ξ is relevant if and only if tr(X) = tr(Xγ−1) for all X . This is
so only if γ = 1. Thus the only relevant double coset of S contained in P is S
itself.

If C is invertible then the double coset of g contains an element of the form

ξγ :=

(
0 γ
I 0

)
.

Then Sξγ is the group of matrices of the form

(
g 0
0 g

)
, g ∈ Tγ ,

where Tγ is the centralizer of γ in GL2(F ). Such ξγ is relevant. Two elements
ξγ1

, ξγ2
are in the same double coset if and only if γ1 and γ2 are conjugate in

GL2(F ).

Next, we make the preliminary observation that in order for g =

(
A B
C D

)

to be relevant it is necessary that for Y1, Y2 ∈M2×2(F ) the relations

Y1C = 0, CY2 = 0, Y1D = AY2

imply trY1 = trY2.
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If C has rank 1, then simple computations show that the double coset of g
always contains either an element of the form





0 0 a b
1 0 0 0
0 1 0 0
0 0 c d





or an element of the form 



1 0 0 0
0 0 a b
0 1 0 0
0 0 c d





with (
a b
c d

)

invertible.
In the first case, the preliminary observation implies that if g is relevant

then c = 1. Further computations show that the double coset contains a unique
element of the form

ηr :=





0 0 0 r
1 0 0 0
0 1 0 0
0 0 1 0





with r 6= 0. The intersection Sηr = S ∩ η−1
r Sηr is the group of matrices of the

form 



a 0 0 0
0 b 0 0
0 0 a 0
0 0 0 b









1 0 x 0
0 1 0 0
0 0 1 0
0 0 0 1





and ηr is relevant.
In the second case, the preliminary observation implies that if g is relevant

then c = 0. Further computations show that the double coset contains a unique
element of the form

ǫr :=





1 0 0 0
0 0 r 0
0 1 0 0
0 0 0 1



 .

with r 6= 0. The group Sǫr is the group of elements of the form

z





1 x ru y
0 1 0 u
0 0 1 x
0 0 0 1



 ,
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with z in Z. It is easily checked that such an element is relevant if and only if
r = −1. Thus we have another relevant double coset, namely, the double coset
of

ǫ :=





1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1



 ,

with Sǫ the group of matrices of the form

z





1 x −u y
0 1 0 u
0 0 1 x
0 0 0 1



 .

An important observation is that the anti-automorphism

g 7→ w2
tgw2 , w2 =





0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



 ,

leaves invariant P , its unipotent radical U , the subgroup S, the character σ of
S and fixes any relevant double coset. Indeed, this anti-automorphism sends ξγ
to ξw2

tγw2
, with

w2 =

(
0 1
1 0

)
.

Since γ is conjugate to tγ the elements ξγ and ξw2
tγw2

are in the same double
coset. For the other double cosets the given representative is actually invariant
under the anti-automorphism. The observation follows. We summarize our
calculations below.

Lemma 1. The relevant S-double cosets for GL4(F ) are S, SξγS (where γ is
determined up to GL2(F )-conjugacy), SηrS with r 6= 0, and SǫS.

2.2 Local Orbital Integrals for GL4(F )

Let F be a local field. By abuse of notations, we often write G = GL4(F ). Let
S denote the Shalika subgroup of G. Let ψ be a non-trivial additive character
of F . We endow the vector space M2×2(F ) with the self-dual Haar measure for
the character ψ ◦ tr. On the other hand, we choose a Haar measure on GL2(F )
and Tγ(F ), the centralizer of γ in GL2(F ), in the usual way (as in the ordinary
trace formula computations). We use the isomorphisms

X ↔

(
12 X
0 12

)
, g ↔

(
g 0
0 g

)

to transport these measures to U and H respectively. The product of these
measures is then a Haar measure on S.
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As in the global case, we define a character θ : S(F ) → C× by

θ

((
A 0
0 A

)(
I X
0 I

))
= ψ(tr(X)) .

To say that an element g is relevant amounts to saying that the character

(u1, u2) 7→ θ(u1)θ(u2)
−1

is trivial on the stabilizer of G in S(F ) × S(F ), i.e.,

θ(gsg−1) = θ(g), ∀g ∈ Sg(F ) := S(F ) ∩ g−1S(F )g .

Assuming g is relevant we study the orbital integrals of a function f ∈ C∞
c (G),

that is, the integrals

Ξ(f, g) :=

∫
f(s1gs

−1
2 )θ(s1)θ(s2)

−1ds1ds2 .

The integral is over the quotient of S(F )×S(F ) by the stabilizer of g in S(F )×
S(F ). We can also write this integral as

Ξ(f, g) :=

∫

Sg(F )\S(F )

(∫

S(F )

f(s1gs2)θ(s1)ds1

)
θ(s2)ds2 . (1)

If g = 1, then

Ξ(f, 1) =

∫

S

f(s)θ(s)ds

and convergence is evident for smooth f of compact support.
If g = ξγ , then computing formally at first we define

Ff (h) :=

∫
f

[(
I X
0 I

)(
g 0
0 g

)(
0 h
I 0

)(
I Y
0 I

)]
ψ(tr(X + Y ))dXdY dg .

Then
Ξ(f, ξγ) = O(Ff , γ) (2)

where, for any smooth function of compact support φ on GL2(F ), we denote by
O(φ, γ) the orbital integral of φ on γ, i.e.,

O(φ, γ) =

∫

GL2(F )/Tγ(F )

φ(hγh−1)dh .

To justify our computation we prove a lemma.

Lemma 2. The integral defining Ff converges. If φ is any smooth function of
compact support on F× then the function Ff (h)φ(det h) is a smooth function of
compact support on GL2(F ).

8



Proof. Indeed
(
I X
0 I

)(
0 gh
g 0

)(
I X
0 I

)
=

(
Xg gh+XgY
g gY

)

has determinant equal to det g2 deth. If this matrix belongs to a compact set
and det h is also in a compact set, then det g is in a compact set of F×. By
inspection, g is in a compact set of M2×2(F ), and thus in fact in a compact
set of G(F ). Now Xg and gY are in compact sets of M2×2(F ). Therefore X
and Y , in fact, lie in compact sets of M2×2(F ). Next gh is in a compact set of
M2×2(F ). Hence h is in a compact set of M2×2(F ). Since deth is in a compact
set of F×, we have finally that h in a compact set of G(F ).

For a given γ we have det hγh−1 = det γ. Thus our computation (2) is
justified, the orbital integral converges. More precisely, for a given γ it is equal
to the orbital integral of a smooth function of compact support on G(F ) (which
depends on γ).

In particular, assume F is non-Archimedean, ψ is unramified, that is, the
largest ideal of F on which ψ is trivial is O, and f is the characteristic function
of GL4(O). Let φ0 be the characteristic function of O×. Then Ff (h)φ0(det h)
is the characteristic function Φ0 of GL2(O). In other words, for | det γ| = 1,
Ξ(f, ξγ) is the orbital integral of Φ0 at γ.

We briefly discuss the convergence of the other orbital integrals. For ηr it
suffices to prove that if the product





a u x y
0 b z t
0 0 a u
0 0 0 b



 ηr





1 u1 0 y1
0 1 z1 t1
0 0 1 u1

0 0 0 1





=





u uu1 + x y + xz1 ar + t1x+ u1y + uy1
b bu1 + z t+ zz1 tu1 + by1 + t1z
0 a u+ az1 at1 + uu1

0 0 b bu1





belongs to a compact set of GL4, then a and b lie in compact sets of F× and
the other variables in a compact set of F . This is immediate.

For the element ǫ, it suffices to prove that if the product




a u x y
0 b z t
0 0 a u
0 0 0 b



 ǫ





a11 0 x1 0
0 1 z1 0
0 0 a1 0
0 0 0 1





=





aa1 x −a1u+ ax1 + xz1 0
0 z −a1b+ zz1 t
0 a az1 u
0 0 0 b





belongs to a compact set of GL4 then a, b, a1 are in compact sets of F× and the
other variables in a compact set of F . Again, this is immediate.
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3 Local orbital integrals for GL2(D)

3.1 Local orbital integrals

Let F be any field and D a quaternion (or even any division) algebra of center
F . Again, let S be the Shalika subgroup of G = GL2(D) of matrices of the form

(
A B
0 A

)

and σ the algebraic character

(
A 0
0 A

)(
I X
0 I

)
7→ tr(X)

where tr is the reduced trace. We say that an element ξ is relevant if the
algebraic character

(u1, u2) 7→ σ(u1) − σ(u2)

is trivial on the stabilizer of ξ in S × S, or, what amounts to the same,

σ(ξsξ−1) = σ(s)

on the group Sξ := S ∩ ξ−1Sξ. The description of the relevant elements is
similar to the previous case but simpler. The only relevant elements (up to
double cosets) are the identity and the elements of the form

ξγ :=

(
0 γ
I 0

)
, γ ∈ D× .

The subgroup Sξγ is the group of matrices of the form

(
A 0
0 A

)

with A ∈ Tγ , the centralizer of γ in D×.
Let P be the parabolic subgroup of matrices of the form

(
A B
0 D

)
,

M the subgroup of matrices of the form

(
A 0
0 D

)
,

and U the unipotent radical of P , that is, the group of matrices of the form

(
I B
0 I

)
.

10



Let also H the subgroup of matrices of the form

(
A 0
0 A

)
.

Let us denote by g 7→ ιg an anti-automorphism of D such that g+ιg = tr(g)I
and gιg = det gI. Then g and ιg have the same characteristic polynomial and
are thus conjugate in D×. We set then

τ

[(
A B
C D

)]
= w

(
ιA ιC
ιB ιD

)
w , w =

(
0 I
I 0

)
.

Again, this is an anti-automorphism which leaves the relevant double cosets
invariant.

Now suppose F is a local field and G = GL2(D). Let ψ be a non-trivial
additive character of F . We endow the vector space D with self-dual Haar
measure for the character ψ ◦ tr, where tr is the reduced trace. Let ψ be a
non-trivial additive character of F . We endow the vector space M2×2(F ) with
the self-dual Haar measure for the character ψ◦tr, where tr is the reduced trace.
On the other hand, we choose a Haar measure on D× and Tγ in the usual way
(as in the ordinary trace formula computations). We use the isomorphisms

X ↔

(
I X
0 I

)

and

g ↔

(
g 0
0 g

)

to transport these measures to U and H respectively. The product of these
measures is then a Haar measure on S.

Define θ : S(F ) → C× by

θ

((
A 0
0 A

)(
I X
0 I

))
= ψ(tr(X)).

We consider the orbital integral of a relevant element g,

Ξ(f, g) =

∫

Sg(F )\S(F )

(∫

S(F )

f(s1gs2)θ(s1)ds1

)
θ(s2)ds2 .

Then

Ξ(f, I) =

∫

S

f(s)θ(s)ds .

If g = ξγ , then we define

Ff (h) :=

∫
f

[(
I X
0 I

)(
0 gh
g 0

)(
I Y
0 I

)]
ψ(tr(X + Y ))dXdY dg
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and
Ξ(f, gγ) = O(Ff , γ),

where

O(Ff , γ) =

∫

D×/Tγ

Ff (hγh−1)dh .

The product Ff (h)φ(det h), for φ smooth of compact support on F×, is a func-
tion of compact support on D× and Ξ(f, ξγ) is the orbital integral of a smooth
function of compact support on D× (depending on det γ).

3.2 Matching orbital integrals

Now let F be a local field. Let f be a function on GL2(D) with support contained
in the set ΩD of elements (

A B
C D

)

such that detC 6= 0. Then, on the support of f , detC remains in a compact set
of F×. In the formula for the computation of Ff (h),

Ff (h) =

∫
f

(
Xg gh+XgY
g gY

)
ψ(tr(X + Y ))dXdY dg,

we see that det g2 deth and det g remain in compact set of F×. Thus deth is
in a compact set of F× and the function Fh is a smooth function of compact
support on D×. Any smooth function of compact support can be obtained this
way.

The same discussion applies to the group G′ = GL4(F ). We let Ω4 be the
set of elements (

A B
C D

)

of G′ such that detC 6= 0. Then for any smooth function of compact support f ′

with support contained in Ω4 the function Ff ′ is a smooth function of compact
support.

Recall the notion of matching orbital integrals for smooth functions of com-
pact support on G and G′. If γ and γ′ are semi-simple non-central elements
of G and G′ with the same characteristic polynomials, we write γ ∼ γ′. We
say φ and φ′, functions on D× and GL2(F ) respectively, have matching orbital
integrals if

O(φ, γ) = O(φ′, γ′) ,

whenever γ and γ′ are semi-simple non-central elements such that γ ∼ γ′, and

O(φ, γ′) = 0 ,

when γ′ is an element of G′ with distinct eigenvalues in F×. Recall that for
every φ there is a function φ′ with matching orbital integrals (see, e.g., Section
2 of [Ro]).
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Thus for any f with support contained in ΩD there is a function f ′ with
support contained in Ω4 such that

Ξ(f, ξγ) = Ξ(f ′, ξ′γ) ,

whenever γ and γ′ are semi-simple non-central elements with γ ∼ γ′, and

Ξ(f ′, ξ′γ) = 0

each time γ′ is a an element with distinct eigenvalues in F×.
In the Archimedean case we will denote by ΩD,e the set of matrices of the

form (
I X
0 I

)(
0 gh
g 0

)(
I Y
0 I

)
, h ∈ D× − Z(F ) ,

and we will assume that the support of f is contained in ΩD,e. Similarly we will
denote by Ω4,e the set of matrices of the form

(
I X
0 I

)(
0 gh
g 0

)(
I Y
0 I

)
,

where h is elliptic regular, that is, has distinct eigenvalues not in F . We will
take the support of f ′ contained in Ω4,e. Any f with support contained in ΩD,e

matches a function f ′ with support contained in Ω4,e.

4 A simple trace formula for GL2(D)

Let G = GL2(D) where D is a quaternion algebra over a number field F . An
element ξ ∈ G(F ) is relevant if and only

θ(ξuξ−1) = θ(u)

for all u ∈ Sξ(A) = S(A) ∩ ξ−1S(A)ξ. We consider then the orbital integral

Ξ(f, ξ) :=

∫ (∫
f(s1ξs2)θ(s1)ds1

)
θ(s2)ds2

with s1 ∈ S(A), s2 ∈ Sξ(A)\S(A). Suppose ξ = ξγ . Computing formally we set

Ff (h) =

∫
f

[(
I X
0 I

)(
0 gh
g 0

)(
I Y
0 I

)]
dgψ(tr(X + Y ))dXdY .

Then
Ξ(f, ξγ) = O(Ff , γ) ,

where O(φ, γ) denotes the global orbital integral

O(φ, γ) =

∫

D×(A)/Tγ(A)

φ(hγh−1)dh ,

and Tγ denotes the centralizer of γ in D×. To justify our computations we prove
the following lemma.
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Lemma 3. If the matrix
(
I X
0 I

)(
0 gh
g 0

)(
I Y
0 I

)
=

(
Xg gh+XgY
g gY

)

is in compact set of GL2(D(A)) and the reduced determinant deth is in F×,
then deth takes only finitely many values, g and h remain in a compact set of
D×(A), and X and Y lie in a compact set of D(A).

Proof. Indeed g is in a compact set of D(A) and det g2 deth in a compact set
of A×. A fortiori, deth−1 remains in a compact set of A. Since it is in F×, it
remains in a finite set. Hence det g2 remains in a compact set of A

×. Thus det g
remains in a compact set of A×. Hence g is in fact in a compact set of D×(A).
Now Xg and Y g are in compact sets of D(A), thus X and Y are in compact
sets of D(A).

The lemma shows in particular that there is a smooth function of compact
support φ on D×(A) such that

Ff (h) = φ(h)

when deth is in F×. Then

Ξ(f, ξγ) = O(φ, γ) .

For each finite place v, let αi, 1 ≤ i ≤ 4 be an Fv-basis of Dv. In an obvious
way, it gives a basis αi,j , 1 ≤ i ≤ 4, 1 ≤ j ≤ 4 of M2×2(Dv). Let αv and α2,v

be the Ov-modules generated respectively by {αi} and {αi,j}. Then for almost
all v, Dv is split, αv is a maximal compact subring of Dv and α2,v is a maximal
compact subring of M2×2(Dv). The groups K1

v := α×
v and Kv := α×

2,v are
then maximal compact subgroups of D×

v and GL2(Dv) respectively. We choose
maximal compact subgroups Kv at the remaining places. We set K =

∏
Kv.

We assume that f =
∏
fv where, for almost all v, the function fv is the

characteristic function of Kv. Then, for a given γ, for almost all v, if deth =
det γ, then Ffv

(hv) = φ0,v(hv) where φ0,v is the characteristic function of α×
v .

Furthermore, for a given γ, almost all orbital integrals are equal to 1, for a
suitable choice of the measures.

Consider the kernel function

K(x, y) = Kf(x, y) =
∑

Z(F )\G(F )

∫

Z(A)

f(zx−1ξy)dz. (3)

We assume that at every place v where D is ramified the support of the
function fv is contained in the set ΩDv

. If furthermore v is Archimedean we
assume that the support of fv is contained in ΩDv ,e. Then the intersection
suppf ∩ S(A)ξS(A) where ξ ∈ S(F ) is empty unless ξ is in the double coset
of an element of the form ξγ with γ in a finite union of conjugacy classes of
D× − F×. We now compute

∫

Z(A)S(F )\S(A)

∫

Z(A)S(F )\S(A)

K(s1, s2)θ(s1)
−1ds1θ(s2)ds2 .
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This can be computed as

∫

Z(A)S(F )\S(A)




∑

ξ∈S(F )\G(F )

∫

S(A)

f(s1ξs2)θ(s1)ds1



 θ(s2)ds2 =

∫

Z(A)S(F )\S(A)




∑

γ,σ∈Sξγ (F )\S(F )

∫

S(A)

f(s1ξγσs2)θ(s1)ds1



 θ(s2)ds2 =

∑

γ

∫

Z(A)Sξγ (F )\S(A)

(∫

S(A)

f(s1ξγs2)θ(s1)ds1

)
θ(s2)ds2

where γ runs over a set of representatives for the conjugacy classes in D× − Z.
We now use the fact that

s2 7→

∫

S(A)

f(s1ξγs2)θ(s1)ds1 θ(s2)

is invariant on the left under Sξγ (A) to write this as

∑

γ

Vol(Z(A)Sξγ (A))\Sξγ (A))

∫

Z(A)Sξγ (F )\S(A)

(∫

S(A)

f(s1ξs2)θ(s1)ds1

)
θ(s2)ds2

Recall that Sξγ is the group of matrices of the form

(
g 0
0 g

)
, g ∈ Tγ ,

where Tγ is the centralizer of γ in D×. Thus the final expression for our integral
is ∑

γ

Vol(F×(A)Tγ(F )\Tγ(A)) Ξ(f, γ) .

We will assume furthermore that there is a place v0 where D is split, and
the function fv0

is supercuspidal, that is,

∫

U(Fv0
)

fv0
(u)du = 0

each time U is the unipotent radical of a parabolic subgroup of Gv0
defined over

Fv0
. We have then

Kf (x, y) =
∑

π

Kπ,f(x, y)

where the sum is over all cuspidal representations π of G(A) with trivial central
character which have a supercuspidal component at v0. Here

Kπ,f(x, y) =
∑

π(f)φi(x)φi(y)

15



where φ is an orthonormal basis of the space of π. We set

Bπ(f) =

∫

S(F )Z(A)\S(A)

∫

S(F )Z(A)\S(A)

Kπ,f(s1, s2)θ
−1(s1)θ(s2)ds1ds2 .

This is the global Bessel distribution attached to π. At least, if each fv is Kv

finite and we take the φi K−finite, then we can write

Bπ(f) =
∑

i

λ(π(f)φi)λ(φi) .

In fact, one can show that the series converges absolutely. At any rate, we
denote by Hπ the Hilbert space of the representation π, by Vπ the space of
smooth vectors, by V∗

π its topological dual. Then

Vπ ⊆ Hπ ⊆ V∗
π .

We still denote by π the natural representation of π on Vπ and V∗
π. The scalar

product (, ) on Hπ ×Hπ extends to Vπ × V∗
π or V∗

π × Vπ. Finally, for f smooth
of compact support and λ ∈ V∗

π the vector π(f)λ is in Vπ. The period integral
λ is in V∗

π. Then, at least under the assumption of K−finiteness,

Bπ(f) =
∑

i

(π(f)(φi), λ)(φi, λ) = (π(f)λ, λ) .

This expression is still valid for f smooth of compact support. Compare with
p. 184 of [Sh]. Then

∫

S(F )Z(A)\S(A)

∫

S(F )Z(A)\S(A)

Kf (s1, s2)θ
−1(s1)θ(s2)ds1ds2 =

∑

π

Bπ(f) .

Of course, π is distinguished if and only if the distribution Bπ is not identically
0.

Finally, we get

∑

π

Bπ(f) =
∑

γ

Vol(F×(A)Tγ(F )\Tγ(A)) Ξ(f, γ) .

5 A simple trace formula for GL4

Now we consider the group G′ = GL4 with Shalika subgroup S′. We choose
maximal compact subgroups K ′

v in the usual way. Thus K ′
v = GL4(Ov) if v is

finite. We set K ′ =
∏

v K
′
v. We let f ′ be a smooth function of compact support

on G′(A). We assume that f =
∏

v f
′
v, where f ′

v is the characteristic function of
K ′

v for almost all v. We assume that, at each place v where D is ramified, the
support of f ′

v is contained in the set Ω4,v. Furthermore if v is an Archimedean
place where D is ramified, we assume that the support of f ′

v is contained in the
set Ω4,v,e. Then there are only finitely many cosets S′(F )ξS′(F ), ξ ∈ G′(F ),
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such that the support of f ′ intersects S′(A)ξS′(A). Furthermore they are cosets
of the form S′(F )ξγS

′(F ), where γ ∈ GL2(F ) is elliptic at any Archimedean
place where D splits.

We introduce the kernel function

K ′(x, y) = Kf ′(x, y) =
∑

Z(F )\G(F )

∫

Z(A)

f ′(zx−1ξy)dz.

We find, as before,
∫ ∫

K ′(s1, s2)θ(s1)
−1θ(s2)ds1ds2 =

∑

γ

Vol(F×(A)\Tγ(A))Ξ(f ′, ξγ) ,

where γ runs through a set of representatives for the conjugacy classes of elliptic
elements of GL2(F ), in fact, the elements elliptic at each Archimedean place
where D is ramified. Next, we assume that f ′

v0
is supercuspidal at a finite place

v0 where D splits. We have then an identity

K ′(x, y) =
∑

π′

Kπ′,f ′(x, y)

where the sum is over all cuspidal representations π′ of G′(A) with trivial central
character which have a supercuspidal component at v0. As before, we have set

Kπ′,f ′(x, y) =
∑

i

π′(f ′)φi(x)φi(y)

where the sum is over an orthonormal basis φi of π′. We set

Bπ′(f ′) =

∫ ∫
Kπ′,f ′(s1, s2)θ(s1)

−1θ(s2)ds1ds2 .

This is the global Bessel distribution attached to π′. The representation π′ is
distinguished if and only if the distribution Bπ′ is not identically 0.

The sum over π′ converges in the space of smooth rapidly decreasing func-
tions on G′(F )\G′(A). Now we can integrate over the space of finite volume
(Z(A)S′(F )\S′(A))2 to get

∫ ∫
K ′(s1, s2)θ(s1)

−1θ(s2)ds1ds2 =
∑

π′

Bπ′(f ′)

On the other hand, at least when f ′ is K ′−finite,

Bπ′(f ′) =
∑

i

λ′(π′(f ′)φi)λ′(φi) .

As before, we can think of λ′ as a continuous linear form on the space of smooth
vectors and write

Bπ(f) = (π′(f ′)λ′, λ′) .
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6 Comparison

Now we compare the two expressions we have just obtained. We choose matching
f and f ′. At a place v where D is ramified we demand that fv and f ′

v match
in the sense given above. At a place v where D splits we have an isomorphism
Dv ≃ GL2(Fv) and thus an isomorphism Gv ≃ G′

v which takes Sv to S′
v. Then

the isomorphism is unique up to inner automorphisms defined by elements of Sv

and S′
v. Furthermore, at almost all places we may assume that the isomorphism

Dv ≃ M2×2(Fv) takes αv to M2×2(Ov). Then the isomorphism Gv ≃ G′
v

takes the maximal compact subgroup Kv to K ′
v. We then assume that fv and

f ′
v correspond to one another by this isomorphism. (Since Gv ≃ G′

v almost
everywhere, there is no issue of a fundamental lemma.) Then

Ξ(f, ξ′γ) = 0,

unless there exists γ ∈ D× − F× with γ ∼ γ′, in which case

Ξ(f, ξγ) = Ξ(f ′, ξ′γ) .

Moreover Tγ and Tγ′ are then isomorphic. In particular, Tγ(A)/Tγ(F )F×(A)
and Tγ′(A)/Tγ(F )F×(A) have the same volume. We conclude that

∑
Vol(Tγ(A)/F×(A))Ξ(f, ξγ) =

∑
Vol(Tγ′(A)/F×(A))Ξ(f ′, ξγ′) ,

and thus ∑

π

Bπ(f) =
∑

π′

Bπ′(f ′) .

If π is distinguished the distribution Bπ is non-zero. Our next task is to
prove that if Bπ is distinguished, then we can choose f as above such that
Bπ(f) 6= 0. This requires local preliminaries.

7 Local periods: non-Archimedean case

Let F be a local non-Archimedean field and G = GL2(D) where D is a quater-
nion algebra over F . Let π be an irreducible admissible unitary representation
of G with trivial central character. Let V be the space of smooth vectors of π.
Let V ∗ be the dual space of V . We define the space of Shalika functionals of π
to be

S(π) = {λ ∈ V ∗|λ(π(s)v) = θ(s)λ(v), v ∈ V, s ∈ S} .

We say that π is distinguished if S(π) 6= 0.
If λ and µ are in S(π) we can define a distribution

B(f) =
∑

i

λ(π(φ)φi)µ(φi)

where φi is an orthonormal basis of smooth vectors in π. As in the global case
we have inclusion

V ⊆ H ⊆ V ∗

18



and we can write the distribution in the form

B(f) = (π(f)λ, µ) .

For every s1, s2 ∈ S we have

B(Ls1
Rs2

f) = θ(s1s
−1
2 )B(f) .

We first recall the following result.

Proposition 1. ([PR]) Let π be an irreducible, admissible, unitary representa-
tion of GL2(D). Then dimC S(π) is at most one.

We briefly give the argument here. The involution τ introduced previously
leaves P , U , H and S invariant. In addition

θ(τ(s)) = θ(s) .

For any function f we set f τ (x) = f(τ(x)) and for any distribution T we define
T τ by T τ(f) = T (f τ). A standard argument shows that the above proposition
follows from the following.

Proposition 2. Let Λ be a distribution on G such that, for all s1, s2 ∈ S(F )
and all functions f ,

Λ(Rs1
Ls2

f) = θ(s1)θ(s2)
−1Λ(f) .

Then Λτ = Λ.

Proof. As we have observed the double cosets are invariant under τ . Thus the
orbital integrals satisfy the hypotheses of the proposition and the conclusion.
One concludes by using an argument of density. See [PR] for details.

Now suppose that S(π) 6= 0. Choose λ 6= 0 in S(π) and set

Bπ(f) =
∑

i

λ(π(f)φi)λ(φi) .

This is the (local) Bessel distribution associated to π (and λ). Recall the open
set Ω = ΩD of matrices of the form

(
A B
C D

)

with C invertible.

Proposition 3. The restriction of Bπ to the open set Ω is non-zero.

Proof. Assume that this restriction is 0. Then Bπ is supported on P . Thus it
is in fact a distribution on P . We show that the restriction of Bπ to P − S is 0.
To that end, we use the following lemma (Lemma 6.7 of [Ra]).
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Lemma 4. If T is a distribution on P − S such that

T (Lu1
Ru2

f) = θ(u1u
−1
2 )T (f)

for any u1, u2 ∈ U , then T = 0.

Proof. Since the author leaves the details to the reader there, we give a proof
here. Let M be the group of diagonal matrices and M0 the open subset of

matrices of the form

(
a 0
0 b

)
with a 6= b. Thus P − S = M0U = UM0. The

property of invariance of T on the right implies there is a distribution µ on M0

such that

T (f) =

∫
αf (a, b)dµ(a, b)

where

αf (a, b) :=

∫
f

[(
a 0
0 b

)
u

]
θ(u)du .

The function αf is an arbitrary smooth function of compact support onM0. The
property of invariance on the left implies that µ satisfies the following property.
For every X ∈ D,

ψ(tr(a−1Xb−X))dµ(a, b) = dµ(a, b) .

This can also be written as

ψ(tr((ba−1 − I)X))dµ(a, b) = dµ(a, b) .

Let φ be a smooth function of compact support on D. The above identity
implies

φ̂(ba−1 − I)dµ(a, b) = dµ(a, b) ,

where φ̂ is the Fourier transform of φ. If α is any smooth function of compact
support on M0, the difference ba−1− I remains in a compact set on the support
of α. We can choose φ̂ so that φ̂(ba−1 − I) = 0 on the support of α. Thus

α(a, b)φ̂(ba−1 − I) = 0 and
∫
α(a, b)dµ(a, b) = 0. So T = 0.

At this point we are reduced to the case where Bπ is supported on S, hence
is a distribution on S. Thus

Bπ(f) = c

∫

S

f(s)θ(s)ds (4)

for some constant c ([BZ] or Prop 4.3.2 of [Bu]).
Recall that a distribution µ is said to be of positive type if µ(f ∗ f∗) ≥ 0

for all f , where f∗(x) = f(x−1). Then the completion of 〈f1, f2〉 := µ(f1 ∗ f
∗
2 )

modulo its kernel is a unitary representation of G which is said to be associated
with π.

By definition, Bπ(f) is a distribution of positive type. Indeed,

Bπ(f∗ ∗ f) = (π(f)λ, π(f)λ) . (5)
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Because π is irreducible, the representation associated to the distribution Bπ is
π itself.

On the other hand
∫
f(s)θ(s)ds is clearly of positive type. Thus c ≥ 0. The

representation associated to the distribution
∫
f(s)θ(s) is the unitary represen-

tation σ of G induced by the character θ. If c > 0, σ ≃ π ([Di], p. 40). Thus σ
is admissible. But this is a contradiction. Indeed let U be a small enough open
subring of D. Denote by K0 the subgroup of matrices congruent to I modulo
U . Then

K0 = (K0 ∩ P ).(U ∩K0)

where U is the transpose of U . Consider the subspace V0 of σ of functions f
supported on PK0 and invariant under K0 on the right. Such a function f is
uniquely determined by the function φ on D× determined by

φ(h) = f

(
h 0
0 I

)
.

Now φ is any function such that φ(k1hk2) = φ(h) for k1, k2 congruent to 1
modulo U . Thus V0 is infinite dimensional which contradicts the fact that σ is
admissible. Thus c = 0 and Bπ = 0, a contradiction.

8 An argument of Shalika

Before we proceed to the Archimedean case we review an argument of Shalika
([Sh]) on the transversal order of distributions supported by a manifold. Let G
be a real Lie group and G1, G2 closed subgroups. We do not assume that the
groups are connected. Let g, g1, g2 be their Lie algebras, and U(g),U(g1),U(g2)
the enveloping algebras. For every X ∈ g (resp. U(g)), let ρ(X) be the corre-
sponding left invariant vector field (resp. differential operator). Thus for X ∈ g

ρ(X)f(g) =
d

dt

∣∣∣∣
t=0

f(g exp(tX)) .

We denote by X 7→ X̌ the involution of U(g) such that X̌ = −X for X ∈ g. If
T is a distribution and X ∈ g we define ρ(X)T by by ρ(X)T (f) = T (ρ(X̌)f).

We assume that g = g1 ⊕ g2. Then at any point x ∈ G, Tx(G) = ρ(g1)x ⊕
ρ(g2)x. Here Tx(G) is the tangent space at x and for a vector field L, Lx is the
evaluation at x. In particular, if x ∈ G1 then Tx(G) = Tx(G1) ⊕ ρ(g2)x. We
denote by U(g)n,U(gi)n the canonical filtration of the enveloping algebra. We
choose a basis of g2 and then use it to construct a basis of standard monomials
Xq of U(gi). We let |q| be the degree of the monomial. Thus Xq ∈ U(g2)|q| and
Xq 6∈ U(g2)|q|−1. Let T be a distribution on G which is supported on G1. Then,
if x is a point of G1, there is a relatively compact open neighborhood U of x in
G such that the restriction of T to U has the form

T |U =
∑

q

ρ(Xq)Tq ,
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where the Tq are uniquely determined distributions on U ∩ G1 (almost all 0).
We say that T |U has transversal order ≤ n if |q| ≤ n for all q with Tq 6= 0; if, in
addition, there is at least one q such that |q| = n and Tq 6= 0 we say that T has
transversal order n on U ∩G1. This notion is independent of the choice of the
basis. Shalika observes that if X is in U(g1) and T has transversal order ≤ n,
then ρ(X)T has transversal order ≤ n. Similarly, if φ is a smooth function on
G and T has transversal order ≤ n, then φT has transversal order ≤ n.

Often this can be used to show that if the distribution T satisfies a suitable
differential equation then, in fact, it is 0. For instance suppose G2 has dimension
3 and let X1, X2, X3 be a basis of g2. Suppose that

ρ(X2
1 +X2

2 +X2
3 )T = ρ(D)T + φT ,

whereD ∈ U(g1) and φ is a smooth function on G. Suppose T is non-zero. Then
we can find U as above such that T |U 6= 0. Let then n ≥ 0 be the transversal
order of T |U . The right hand side has transversal order ≤ n. On the other
hand, we claim the transversal order of the left hand side is n + 2; this gives
a contradiction and proves our assertion. To check our claim, we can take for
basis of U(gi) the monomials Xa

1X
b
2X

c
3 = Xq, q = (a, b, c), |q| = a + b + c. Let

us order lexicographically the multi-indices q with |q| = n. Let q = (a, b, c) be
the largest index with |q|= n and Tq non-zero. Then (we write Xt for ρ(X)T ),

T |U = Xa,b,cTa,b,c +
∑

a′+b′+c′=n
(a′,b′,c′)<(a,b,c)

Xa′,b′,c′Ta′,b′,c′ +
∑

|q′|<n

Xq′Tq′ .

Then (X2
1 +X2

2 +X2
3 )T |U equals

Xa+2,b,cTa,b,c +Xa,b+2,cTa,b,c +Xa,b,c+2Ta,b,c +

∑

a′+b′+c′=n
(a′,b′,c′)<(a,b,c)

(Xa′+2,b′,c′Ta′,b′,c′ +Xa′,b′+2,c′Ta′,b′,c′ +Xa′,b′,c′+2Ta′,b′,c′) +

∑

|q′|<n

Xq′Sq′ .

Now (a+ 2, b, c) is larger than all the monomials q′ with |q′| = n which appear
in this formula. Our claim follows.

Similarly, suppose that X ∈ g2, X 6= 0 and g2 has an arbitrary dimension.
Suppose further that

XT = ρ(D)T + φT

where D and φ are as above. Then again T = 0. The proof is similar but
simpler.
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9 Local periods: Archimedean case

Let F = R and G = GL2(H) where H is the Hamilton quaternion algebra over
R. Let π be an irreducible admissible unitary representation of G. Let V be
the space of smooth vectors of π equipped with it usual topology. Let V ∗ be
the topological dual space of V . We define the space of Shalika functionals of π
to be

S(π) = {λ ∈ V ∗|λ(π(s)v) = θ(s)λ(v), v ∈ V, s ∈ S} .

If λ and µ are in S(π) we can define a corresponding distribution B by

B(f) = (π(f)λ, µ) .

Our first goal in this section is to establish the following proposition.

Proposition 4. Let π be an irreducible, admissible, unitary representation of
GL2(H). Then dimC S(π) is at most one.

To state the Archimedean analogue of Proposition 2 we need to introduce
an element of the center Z(g) of the enveloping algebra of the Lie algebra g of
G = GL2(H). Let {1, i, j, k} denote the usual basis for H over R. Thus ij = k
and i2 = j2 = k2 = −1. Also tr i = tr j = tr k = 0 and we take ι to be the
involution which takes i, j, k to −i,−j,−k respectively. Then the involution τ
of GL(2,H) is defined by

τ

(
A B
C D

)
= w

(
ιA ιC
ιB ιD

)
w , w =

(
0 I
I 0

)
.

We may identify g with M2×2(H). We let g0 be the subspace of X ∈ g with
trX = 0 and B the R-bilinear invariant form defined by B(X,Y ) = tr(XY ).
Thus g0 is a 15-dimensional Lie algebra over R with basis

E0 =

(
I 0
0 −I

)
, E1,a =

(
a 0
0 0

)
, E2,b =

(
0 b
0 0

)
,

E3,b =

(
0 0
b 0

)
, E4,a =

(
0 0
0 a

)
,

where a ∈ {i, j, k} and b ∈ {1, i, j, k}. For an element Eα of the above basis,
let Eα be the corresponding dual basis element with respect to B(X,Y ), i.e,
B(Eα, E

β) = δα,β for all α, β in the index set. One may compute

E0 =
1

4
E0, E

1,a = −
1

2
E1,a, E

2,1 =
1

2
E3,1, E

2,a = −
1

2
E3,a,

E3,1 =
1

2
E2,1, E

3,a = −
1

2
E2,a, E

4,a = −
1

2
E4,a,

where a runs through {i, j, k}. We set

∆ =
∑

EαE
α

=
1

4
E2

0 −
1

2

∑

{i,j,k}

(
E2

1,a + E2
4,a

)
+

1

2

∑

{1,i,j,k}

a2 (E2,aE3,a + E3,aE2,a) .
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This element is invariant under Ad(G) because tr is. In particular, it is in Z(g).
Thus the element ∆ acts on V by a scalar. Also τ(∆) = ∆ and ∆̌ = ∆.

Proposition 5. Suppose F = R. Let Λ be a distribution on G such that, for
all s1, s2 ∈ S(F ) and all functions f ,

Λ(Ls1
Rs2

f) = θ(s1s
−1
2 )Λ(f) .

Suppose furthermore that ∆Λ = k∆ for some k ∈ C. Then Λτ = Λ.

It is a standard argument that this implies the previous proposition ([GK],
[Sh]). The proof of Proposition 5 will follow from two subsequent propositions.

Let P be the subgroup of matrices of the form

(
A B
0 D

)
, and U the subgroup

of matrices of the form

(
I B
0 I

)
. Let M denote the subgroup of matrices of the

form

(
A 0
0 D

)
, and let H be the subgroup of matrices of the form

(
A 0
0 A

)
.

We denote the Lie algebra of one of these groups by the corresponding lower

case gothic letter. Let Ω = ΩH be the open subset of matrices

(
A B
C D

)
with C

invertible.

Proposition 6. Suppose Λ is a distribution on Ω such that Λ(Ls1
Rs2

f) =
θ(s1s

−1
2 )Λ(f) for all s1, s2 ∈ S and all f . Then Λτ = Λ.

Proof. Given f ∈ C∞
c (Ω), we have defined

Ff (h) =

∫

U×U

f

[
u1

(
g 0
0 g

)(
0 h
I 0

)
u2

]
θ(u1u2)du1du2dg.

Let Λ be a distribution on Ω such that Λ(LsR(u)f) = θ(s)θ(u)−1f There is a
unique distribution Λ∗ on H× such that Λ∗(Ff ) = Λ(f). In other words,

Λ(f) =

∫ (∫
f

[
u1

(
g 0
0 g

)(
0 h
I 0

)
u2

]
θ(u1)θ(u2)du1du2dg

)
dΛ∗(h) .

Moreover, Λ satisfies Λ(R(m)f) = Λ(f) for all m ∈ H if and only Λ∗ is an
invariant distribution. Assuming this is the case, we have

Λτ (f) = Λ(f τ )

=

∫ (∫
f

[
u1

(
0 ιh
I 0

)(
g 0
0 g

)
u2

]
θ(u1)θ(u2)du1du2dg

)
dΛ∗(h)

=

∫ (∫
f

[
u1

(
g 0
0 g

)(
0 ιh
I 0

)
u2

]
θ(u1)θ(u2)du1du2dg

)
dΛ∗(h) .

Hence (Λτ )∗ = (Λ∗)ι. Now we appeal to a well known result.

Lemma 5. Let Ξ be an invariant distribution on H×. Then Ξι = Ξ.
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For the convenience of the reader we provide a proof.

Proof. Let T be a torus of H× which is stable under ι, for instance we can take
T to be the stabilizer of i. Then ι induces on T conjugation by an element of
the normalizer of T . Now any conjugacy class intersects T . Thus if f is an
invariant function then f ι = f . Since Ξ is invariant and H×/Z is compact we
have, for any function f ,

Ξ(f) = Ξ(f0) ,

where f0(g) =
∫

H×/Z f(hgh−1)dh. Then Ξι(f) = Ξι(f0) = Ξ(f ι
0) = Ξ(f0) =

Ξ(f). The lemma follows.

Applying the above lemma to Λ∗ establishes Proposition 6.

Coming back to the proof of Proposition 5, we see that the restriction of
Λ−Λτ to Ω vanishes. Thus Λ−Λτ is supported on P . Since ∆(Λ−Λτ ) = k∆,
it will suffice to prove the following proposition.

Proposition 7. Suppose Λ is a distribution on G supported on P such that
∆Λ = κΛ for some κ ∈ C and Λ(Ruf) = θ(u)−1Λ(f) for all u ∈ U and all f .
Then Λ = 0.

Proof. We can write the element ∆ ∈ U(g) in the form

∆ = D +
∑

a∈{1,i,j,k}

a2E3,aE2,a,

where D ∈ U(m). First observe that, for a ∈ {1, i, j, k},

E2,aΛ = 2iπ tr(a)Λ = 2iπδ1,aΛ.

Thus
2iπE3,1Λ = ∆Λ −DΛ = κΛ −DΛ.

and E3,1 ∈ U(u) where u =

{(
0 0
∗ 0

)}
is the Lie algebra of the subgroup U ,

the transpose of U . Certainly g = p ⊕ u. Thus by Shalika’s argument Λ = 0.
This finishes the proofs of all the above propositions.

Now let λ 6= 0 in S(π). We define the local Bessel distribution

Bπ(f) =
∑

i

λ(π(f)vi) λ(vi) .

Let K be a maximal compact subgroup. As before, this is well defined, at least
if f is K−finite, and the φi a basis of the K−finite vectors. For general f we
may take Bπ(f) to be

Bπ(f) = (π(f)λ, λ) .

Since π is irreducible, ∆Bπ = kBπ for some k. We already know that the
restriction of Bπ to Ω is non-zero.

We want to show something more precise.
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Proposition 8. The restriction of Bπ to Ωe is non-zero.

Proof. As before, the distribution Bπ descends to a distribution on H×. We use
a slightly different notation from before. For g ∈ Ω, let Φf ∈ C∞(Ω) be given
by

Φf (g) =

∫
f

[(
I X
0 I

)
g

(
A 0
0 A

)(
I Y
0 I

)]
ψ(tr(X + Y ))dAdXdY .

For any function Φ on Ω denote by rΦ the function on H
× defined by

rΦ(γ) = Φ

(
0 γ
I 0

)
.

There is a unique distribution T on H
× such that

Bπ(f) = T (rΦf ) .

We have to show that T is not supported on the center R× of H×.
To that end we show that T satisfies a certain partial differential equation.

Recall we took

∆ =
∑

EαE
α =

1

4
E2

0 −
1

2

∑

{i,j,k}

(
E2

1,a + E2
4,a

)

+
1

2

∑

{1,i,j,k}

b2 (E2,bE3,b + E3,bE2,b)

in Z(g). We compute
E3,1E2,1 = E2,1E3,1 − E0

and
E3,aE2,a = E2,aE3,a + E0

for a ∈ {i, j, k}. Thus we may rewrite

∆ =
1

4
E2

0 −
1

2

∑

{i,j,k}

(E2
1,a + E2

4,a) +
∑

(1,i,j,k}

E3,bE2,b + 2E0.

Since ∆ is Ad(G) invariant, we have

ρ(∆)Φf = Φρ(∆)f .

Since Bπ(ρ(∆)f) = κBπ(f), we see that T (r∆Φf ) = κT (rΦf ). To understand
what this means, we need to know what is r∆Φf . By linearity, we may write

∆Φf =
1

4
ρ(E2

0 )Φf −
1

2

∑

{i,j,k}

(
ρ(E2

1,a)Φf + ρ(E2
4,a)Φf

)
+

∑

{1,i,j,k}

ρ(E3,b)ρ(E2,b)Φf + 2ρ(E0)Φf . (6)
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By definition ρ(E0)Φf

(
0 γ
I 0

)
equals

d

dt

∣∣∣∣
t=0

∫
f

((
I X
0 I

)(
0 γ
I 0

)(
et 0
0 e−t

)(
A 0
0 A

)(
I Y
0 I

))
ψ(−)

=
d

dt

∣∣∣∣
t=0

∫
f

((
I X
0 I

)(
0 γe−2t

I 0

)(
et 0
0 et

)(
A 0
0 A

)(
I Y
0 I

))
ψ(−)

=
d

dt

∣∣∣∣
t=0

∫
f

((
I X
0 I

)(
0 γe−2t

I 0

)(
A 0
0 A

)(
I Y
0 I

))
ψ(−)

=
d

dt

∣∣∣∣
t=0

rΦf (γe−2t) = ρ(−2X0)rΦf ,

where the integrals on the first three lines are taken dAdXdY , ψ(−) is short for

ψ(tr(X + Y )), and X0 = I ∈ H = Lie(H×). Similarly, ρ(E2
0 )Φf

(
0 γ
I 0

)
is the

value at t = 0, s = 0 of

d2

dtds

∫
f

((
I X
0 I

)(
0 γ
I 0

)(
et+s 0
0 e−t−s

)(
A 0
0 A

)(
I Y
0 I

))
ψ(−)

= rΦf (γe−2(t+s))

Thus

r(ρ(E0)Φf ) = ρ(−2X0)rΦf ,

r(ρ(E2
0 )Φf ) = ρ(4X2

0 )rΦf .

Let a ∈ {i, j, k}. Computing as above, we see ρ(E1,a)Φf

(
0 γ
1 0

)
equals

d

dt

∣∣∣∣
t=0

∫
f

((
I X
0 I

)(
0 γ
I 0

)(
eat 0
0 I

)(
A 0
0 A

)(
I Y
0 I

))
ψ(−)

=
d

dt

∣∣∣∣
t=0

∫
f

((
I X
0 I

)(
0 γe−at

I 0

)(
eat 0
0 eat

)(
A 0
0 A

)(
I Y
0 I

))
ψ(−)

=
d

dt

∣∣∣∣
t=0

rΦf (γe−at) = ρ(−Xa)rΦf ,

where Xa = a ∈ H = Lie(H×). Thus

r(ρ(E2
1,a)Φf ) = ρ(X2

a)rΦf .
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Similarly ρ(E4,a)Φf

(
0 γ
I 0

)
equals

d

dt

∣∣∣∣
t=0

∫
f

((
I X
0 I

)(
0 γ
I 0

)(
I 0
0 eat

)(
A 0
0 A

)(
I Y
0 I

))
ψ(−)

=
d

dt

∣∣∣∣
t=0

∫
f

((
I X
0 I

)(
0 γeat

I 0

)(
A 0
0 A

)(
I Y
0 I

))
ψ(−)

=
d

dt

∣∣∣∣
t=0

rΦf (γeat) = ρ(Xa)Φf .

Thus
r(ρ(X2

4,a)Φf ) = ρ(X2
a)rΦf .

Now consider ρ(E2,bΦf )(g), where b ∈ {1, i, j, k}. This is given by

d

dt

∣∣∣∣
t=0

∫
f

((
I X
0 I

)
g

(
I tb
0 I

)(
A 0
0 A

)(
I Y
0 I

))
ψ(−)

=
d

dt

∣∣∣∣
t=0

∫
f

((
I X
0 I

)
g

(
A 0
0 A

)(
I A−1tbA
0 I

)(
I Y
0 I

))
ψ(−)

=
d

dt

∣∣∣∣
t=0

ψ(− tr(tb))Φf (g).

Note that tr b = 0 if b = i, j or k, so the above quantity will vanish. On the
other hand, if b = 1, then

d

dt

∣∣∣∣
t=0

ψ(− tr(tb)) =
d

dt

∣∣∣∣
t=0

e−8πiηt = −8πiη ,

if ψ(x) = 2iπη. Hence

ρ(E2,b)Φf = −8πiηδ1,bΦf .

Thus we only need to compute ρ(E3,1)Φf

(
0 γ
1 0

)
which equals

d

dt

∣∣∣∣
t=0

∫
f

((
I X
0 I

)(
0 γ
I 0

)(
I 0
t I

)(
A 0
0 A

)(
I Y
0 I

))
ψ(−)

=
d

dt

∣∣∣∣
t=0

∫
f

((
I X
0 I

)(
I tγ
0 I

)(
0 γ
I 0

)(
A 0
0 A

)(
I Y
0 I

))
ψ(−)

=
d

dt

∣∣∣∣
t=0

ψ(−t tr(γ))rΦf (γ) = −2πiη tr γrΦf (γ).

Summing up, we have

rρ(∆)Φf = ρ
(
X2

0 −X2
i −X2

j −X2
k − 4X0

)
rΦf (γ) − 16π2η2 tr γrΦf (γ).

Hence
κT (φ) = T (Dφ)
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where D is the differential operator with variable coefficients given by

Dφ(γ) = ρ
(
X2

0 −X2
i −X2

j −X2
k − 4X0

)
φ(γ) − 16π2 tr(γ)φ(γ).

We want to show T is not supported on R×. We apply Shalika’s argument
to the groups G1 = R× and G2 = H1 = {h : deth = 1}. The Lie algebra of G1

is RX0 and the Lie algebra of G2 is H0 = {h : tr h = 0} with basis Xi, Xj, Xk.
If T is supported on R×, we get T = 0, a contradiction.

10 Local periods for GL4

Let π a unitary irreducible representation of G′ = GL4. As before, we define
S(π). Then dim(S(π)) ≤ 1. This is established in [JR] in the non-Archimedean
case (in the context of GL2n) and in Lemma 5.4.2 of [AG] in the Archimedean
case. We remark that, at least in the non-Archimedean case, this would follow
from the fact that the relevant orbits are invariant under an involution of GL4.

In addition, if F is non-Archimedean, the character ψ is unramified and the
representation π admits a GL2(OF )-invariant vector v0 6= 0, then λ(v0) 6= 0 for
any λ 6= 0 in S(π). This follows from the discussion in [BF] or [JS]. If λ 6= 0 is
in S(π) we define the Bessel distribution Bπ(f) as before.

11 Proof of Theorem 1

Let F be a number field and G = GL2(D) where D is a quaternion algebra over
F . Suppose π1 is an automorphic cuspidal representation of G(A) distinguished
by θ. Let λ be the linear form

λ(φ) =

∫

S(F )Z(A)\S(A)

φ(s)θ(s)ds .

As we have observed the quotient is compact so that the integral is absolutely
convergent and defines a continuous linear form on the space of smooth vectors
of π. Recall the Bessel distribution

Bπ1
(f) = (π1(f)λ, λ) .

It follows that every local component π1v of π1 is distinguished by θv. Further-
more one can choose the local linear forms λv ∈ S(π1v) so that, if f =

∏
v fv,

then
Bπ1

(f) =
∏

v

Bπ1v
(fv) .

This factorization into local distributions follows from the uniqueness of local
distributions established in [PR] and Proposition 4 above. Of course, the local
λv are so chosen that in this product almost all factors are 1. We assume D
ramifies at some infinite place v and π1v0

is supercuspidal for some finite place
v0 which splits D. We choose the functions at a place v where Dv ramifies as
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in the previous sections. Thus fv is supported on the open set ΩDv
if v is finite

and D ramifies at v and the set ΩDv,e is v is infinite and D ramifies at v. As
we have seen, if D ramifies at v, then we have Bπ1v

(fv) 6= 0 for at least one
choice of fv. It is elementary that there is a choice of fv0

supercuspidal such
that Bπ1v0

(fv0
) 6= 0

We choose a matching function f ′ on G′(A) as explained above. Then we
have the identity ∑

π

Bπ(f) =
∑

π′

Bπ′(f ′) .

On the left, the sum is over all cuspidal automorphic representations π of G(A)
which are distinguished and supercuspidal at the place v0. On the right the
sum is over all cuspidal automorphic representations π′ of G′(A) which are
distinguished and supercuspidal at the place v0.

Let U(π1) (resp. U ′(π1)) be the set of all cuspidal representations π of G
(resp. G′) such that πv ≃ π1v at almost all places where π1 is unramified and
πv0

is supercuspidal. By the assumption that π1 has a Jacquet-Langlands lift
to GL4 and the strong multiplicity one for GL4, U

′(π1) contains precisely one
element, π′

1. Then the principle of infinite linear independence of characters of
the Hecke algebra ([La], Section 11)

∑

π∈U(π1)

Bπ(f) =
∑

π′∈U ′(π1)

Bπ′(f ′) = Bπ′

1
(f ′) .

By our strong multiplicity one assumption on π′
1, i.e., U(π1) = {π1}, we see

Bπ′

1
(f ′) = Bπ1

(f) is not identically zero. Thus π′
1 is distinguished as claimed.

References

[AG] Ash, Avner; Ginzburg, David. p-adic L-functions for GL(2n). Invent.
Math. 116 (1994), no. 1-3, 27–73.

[Ba] Badulescu, Alexandru Ioan. Unitary representations and global Jacquet-
Langlands correspondence, Preprint.

[Be] Bernstein, Joseph N. P -invariant distributions on GL(N) and the classifi-
cation of unitary representations of GL(N) (non-Archimedean case). Lie
group representations, II (College Park, Md., 1982/1983), 50–102, Lecture
Notes in Math., 1041, Springer, Berlin, 1984.

[Bu] Bump, Daniel. Automorphic forms and representations. Cambridge Stud-
ies in Advanced Mathematics, 55. Cambridge University Press, Cam-
bridge, 1997.

[BF] Bump, Daniel; Friedberg, Solomon. The exterior square L-function on
GL(n), Festschrift in honor of I. I. Piatetski-Shapiro, Part II (Ramat Aviv,
1989), Israel Math. Conf. Proc., 3, Weizmann, Jerusalem, 47–65.

30



[BZ] Bernstein, I. N.; Zelevinskii, A.V. Representations of the group GL(n,F)
where F is a local nonarchimedean field, Russian Math. Surveys 31 (1976),
no. 3, 1–68.

[Di] Dixmier, Jacques. C∗-algebras. Translated from the French by Francis
Jellett. North-Holland Mathematical Library, Vol. 15. North-Holland
Publishing Co., Amsterdam-New York-Oxford, 1977.

[GK] Gelfand, I.M.; Kajdan, D.A.. Representations of the group GL(n,K)
where K is a local field. Lie groups and their representations (Proc. Sum-
mer School, Bolyai Jnos Math. Soc., Budapest, 1971), pp. 95–118. Hal-
sted, New York, 1975.

[GT] Gan, Wee Teck; Takeda, Shuichiro. On Shalika periods and a theorem of
Jacquet-Martin, Preprint.

[HC1] Harish-Chandra. Invariant distributions on Lie algebras. Amer. J. Math.
86 (1964) 271–309.

[HC2] Harish-Chandra. Harmonic analysis on reductive p-adic groups. Notes by
G. van Dijk. Lecture Notes in Mathematics, Vol. 162. Springer-Verlag,
Berlin-New York, 1970.

[HT] Harris, Michael; Taylor, Richard. The geometry and cohomology of some
simple Shimura varieties. With an appendix by Vladimir G. Berkovich.
Annals of Mathematics Studies, 151. Princeton University Press, Prince-
ton, NJ, 2001.

[Ji] Jiang, Dihua. On the fundamental automorphic L-functions of SO(2n+1).
Int. Math. Res. Not. 2006, Art. ID 64069, 26 pp.

[JNQ] Jiang, Dihua; Nien, Chuffeng; Qin, Yujun. Local Shalika models and
functoriality, Preprint.
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