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Abstract. Let π be a cusp form on PGL(2) over a number field F and let

E be a quadratic extension of F . We use Jacquet’s relative trace formula to
prove an explicit identity relating the central L-value of the base change of π

to E with a specific toric period integral.
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1. Introduction

Let us begin by recalling relevant results on central L-values for GL(2). Let F be
a number field and let E/F be a quadratic extension of F , which we will assume is
split at all the infinite places of F . Let π be a cuspidal automorphic representation
of GL(2,AF ) with trivial central character.

Consider the set of inner forms G of GL(2) such that,

(1) G contains a torus T/F with T (F ) ∼= E×, and
(2) π transfers to an automorphic representation π′ of G(AF ).

The L-function under consideration will be that attached to the base change
πE of π to an automorphic representation of GL(2,AE). Let ε(s, πE) denote the
ε-factor associated to πE . If ε(1/2, πE) = −1 then L(1/2, πE) = 0. Moreover,
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one knows that for each inner form G as above the space of π′ admits no non-zero
T (AF )-invariant linear functional and in particular the map

ϕ 7→
∫
Z(AF )T (F )\T (AF )

ϕ(t) dt

on the space of π′ is identically zero. On the other hand, if ε(1/2, πE) = +1, there
exists a unique inner form G as above such that the space of π′ admits a non-zero
T (AF )-invariant linear functional.

Assume therefore that ε(1/2, πE) = +1. Now fix G and π′ so that π′ admits
such a non-zero form. Waldspurger [Wal85, Proposition 7] obtained a formula of
the form

L(1/2, πE) = c

∣∣∣∣∣
∫
Z(AF )T (F )\T (AF )

ϕ(t) dt

∣∣∣∣∣
2

.

However, his formula is not explicit enough for arithmetic purposes. In particular,
it is not even clear if one can derive L(1/2, πE) ≥ 0 from Waldspurger’s expression.
(The positivity of this central value is predicted by both the Birch and Swinnerton-
Dyer Conjecture and the Generalized Riemann Hypothesis. It is immediate from
the formula below, and was proven by Guo [Guo96] using the relative trace formula.)
Subsequently, explicit formulas for L(1/2, πE) (in fact twists L(1/2, πE ⊗ χ)) have
been obtained by Gross [Gro87], Zhang [Zha01], Xue [Xue] and Popa [Popa]. The
works of Gross, Zhang and Xue are in increasing order of generalization (with
respect to this particular result) and cover the case where F is totally real, E/F
is imaginary quadratic, and π comes from an even weight Hilbert newform on f
(under certain ramification assumptions). Popa’s formula is in the case where both
E and F are totally real (again, with certain ramification conditions). These results
have applications to equidistribution of Heegner points and certain geodesics. They
all rely on the theta correspondence and the Rankin-Selberg method.

In this paper, we prove a result which is more general than [Popa] (when χ is
trivial) and does not require that F be totally real. Furthermore, we would like
to emphasize that we use a completely different approach: Jacquet’s relative trace
formula [Jac86], following, in part, work of Guo [Guo96]. Precisely, we show the
following result.

Theorem 1.1. Assume that E/F is unramified at the primes of F above 2 and is
split at the infinite places of F . Then we have

L(1/2, πE) = C(E, π)
[ϕ0, ϕ0]
[ϕ,ϕ]

∣∣∣∣∣
∫
T (F )Z(AF )\T (AF )

ϕ(t) dt

∣∣∣∣∣
2

.

for a suitable choice of ϕ0 ∈ π, ϕ ∈ π′ and a constant C(E, π) made explicit as
follows.

Let dE/F be the discriminant of E/F ; let qv be the size of the residue field of Fv;
let S1(E, π) be the set of places of F which are unramified and inert in E and at
which π is ramified; and let S2(E, π) be the set of places of F for which both E/F
and π are ramified. Define A(πv) = 1

2 (1 + q−1
v ) if the order of the conductor of πv

is 1, and A(πv) = 1
2 otherwise. Then

C(π,E) =
√
dE/F

∏
v∈S1(E,π)

qv + 1
qv − 1

∏
v∈S2(E,π)

(A(πv)L(1/2, πE,v)) .
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See Section 6.2 for how ϕ0 and ϕ are chosen. Note that ϕ is chosen only up to
a non-zero scalar, but the above expression is still well defined.

This formula agrees with that of [Popa] when the hypotheses coincide. We
stress that our method is quite general, and we hope to remove the ramification
assumptions and generalize the result to include twists by characters in the near
future.

2. Local normalizations

For the next few sections we will be working locally. We use F to denote a local
non-archimedean field with ring of integers O, prime ideal p and units UF . Define
U0
F = UF and UnF = 1 + pn for n > 0. Let q denote the order of the residue field

of F and let | · | (or | · |F for clarity) denote the multiplicative valuation on F such
that |$| = q−1 for any uniformizer $ in F . We let v denote the additive valuation
on F .

Fix an additive character ψ : F → C×. We denote by n(ψ) the conductor of ψ,
i.e. ψ is trivial on p−n(ψ) but non-trivial when restricted to p−n(ψ)−1. On F , we
take the Haar measure dx which is self dual with respect to the character ψ. On
F×, we take the measure

d×x = L(1, 1F )
dx

|x|
.

Set
d = vol(O, dx) = vol(UF , d×x).

For a quadratic extension E/F we use the same notation for E as for F with
the addition of a subscript E. We denote by ψE the pull back of ψ to E via the
trace map to F . We form measures on E and E× in the same way relative to this
character. We note that the measure on E× is

d×xE = L(1, 1E)
dxE
|xE |E

.

We let ∆E denote the discriminant of E/F . If we write E = F [
√
D] then for an

element α = a + b
√
D ∈ E we have dα = |4D|

1
2
F da db. Then the following lemma

is straightforward.

Lemma 2.1. We have vol(OE , dxE) = vol(UE , dx×E) = d2|∆E |
1
2
F .

We now describe the Haar measure on GL(2, F ). Denote by A the subgroup of
GL(2) of diagonal matrices and N the subgroup of upper triangular matrices. Let
K be the maximal compact open subgroup GL(2,O) in GL(2, F ). Define

Kn =
{(

a b
c d

)
∈ GL(2,O) : c ∈ pn

}
.

We set

w =
(

1
−1

)
and

K ′
n = w−1Knw =

{(
a b
c d

)
∈ GL(2,O) : b ∈ pn

}
.

Denote the center of GL(2) by Z.
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For a Haar measure on GL(2, F ), we take

dg = L(1, 1F )
da db dc dd

|det g|2

where g =
(
a b
c d

)
∈ GL(2, F ).

Lemma 2.2. We have

vol(Kn, dg) =
{

d4L(2, 1F )−1, if n = 0;
d4q−nL(1, 1F )−1, if n > 0.

Proof. When n > 0, it is easy to see that
(
a b
c d

)
lies in Kn if and only if |a| = 1,

|d| = 1, |b| ≤ 1 and |c| ≤ q−n. Then the result for positive n follows immediately
from our definitions of dg and d. When n = 0, we note that #K0/K1 = q + 1. �

Suppose now that E is either a quadratic extension of F or isomorphic to F ⊕F .
We denote by X(E/F ) the set of isomorphism classes {(G,T )} where G is an inner
form of GL(2) and T is a torus in G such that T (F ) ∼= E×. When E ∼= F ⊕F it is
evident that X(E/F ) contains only GL(2).

When E/F is a field, we fix c1 = 1 and c2 ∈ F× − NE/FE
×. Assume that

|c2| ≤ 1 is chosen to be maximal. Then we can form the algebra

Di =
{(

α ciβ
β̄ ᾱ

)
: α, β ∈ E

}
.

Note that D1
∼= M2(F ). Let Gi = D×

i . Then we have

X(E/F ) = {(G1, T1), (G2, T2)}.

where Ti denotes the diagonal torus in Gi.
We define orders R′i,n in Di by

R′i,n =
{(

α ciβ
β̄ ᾱ

)
∈ Di : α ∈ OE , β ∈ pnE

}
.

We note that when E/F is unramified R′i,n, is an order inDi of reduced discriminant
p2n+i−1. When E/F is ramified and q > 2, R′i,n is an order in Di of reduced
discriminant pn+1. We define compact open subgroups of Gi(F ) by Ki,n = R′×i,n.
Let Zi denote the center of Gi.

On Gi(F ), take the measure

dgi = L(1, 1F )|ci|F
dα dβ

|αᾱ− ciββ̄|F
for

gi =
(
α ciβ
β̄ ᾱ

)
.

Lemma 2.3. When n > 0, we have

vol(K ′
i,n, dg) =

{
(1 + q−1)|ci|F q−2nd4, if E/F is unramified;
|ci|F q−nd4|∆E |F , if E/F is ramified.
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When n = 0 and i = 1,

vol(K ′
1,0, dg) =

{
(1− q−2)d4, if E/F is unramified;
(1− q−1)d4|∆E |F , if E/F is ramified and q is odd.

When n = 0 and i = 2,

vol(K ′
2,0, dg) = (1 + q−1)|ci|F d4|∆E |F .

Proof. Write an element of K ′
i,n as

(
α ciβ
β̄ ᾱ

)
. We first consider the case that

n > 0. Then α ∈ UE and β ∈ pnE . The definition of dg implies

vol(K ′
i,n, dg) = L(1, 1F )|ci|F vol(UE , dx) vol(pnE , dx).

Now vol(UE , dx) = L(1, 1E)−1 vol(UE , d×x) and vol(pnE , dx) = |$E |nE vol(OE , dx).
Hence Lemma 2.1 implies

vol(K ′
i,n, dg) = L(1, 1F )|ci|FL(1, 1E)−1|$E |nEd4|∆E |F ,

i.e.,

vol(K ′
i,n, dg) =

{
(1 + q−1)|ci|F q−2nd4, if E/F is unramified;
|ci|F q−nd4|∆E |F , if E/F is ramified.

Assume n = 0. First consider the case i = 2. If E/F is unramified, then
|ci|F = q−1, so α ∈ UE and β ∈ OE and we get

vol(K ′
2,0, dg) = L(1, 1F )|ci|F vol(UE , dx) vol(OE , dx) = (1 + q−1)|ci|F d4.

If E/F is ramified, then |ci|F = 1. So at least one of α and β is a unit and we have

vol(K ′
2,0, dg) = L(1, 1F )(vol(UE , dx) vol(OE , dx) + vol(pE , dx) vol(UE , dx))

= L(1, 1F ) vol(UE , dx) vol(OE , dx)(1 + q−1)
= (1 + q−1)d4|∆E |F .

The case i = 1 follows similarly using the fact that

vol ({α ∈ UE : |αᾱ− 1| = 1}, dx) =
q − 2
q − 1

vol(UE , dx),

when E/F is unramified, and

vol ({α ∈ UE : |αᾱ− 1| = 1}, dx) =
q − 3
q − 1

vol(UE , dx),

when E/F is ramified and q is odd. �

3. Matching functions

Let E be either a quadratic extension of F or else isomorphic to F⊕F . We recall
that Jacquet has defined a notion of matching functions between smooth compactly
supported functions on GL(2, F ) and tuples of functions

{fG ∈ C∞c (G(F )) : G ∈ X(E/F )}.
In the case that E is split over F this matching is trivial. We now recall the notion
of matching functions in the case that E/F is a field. Fix representatives G1 and
G2 for the set X(E/F ) of isomorphism classes as in the previous section. Let η
denote the quadratic character of F× associated to the extension E/F .
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For a function f ∈ C∞c (GL(2, F )) and a ∈ F − {0, 1}, form the orbital integral

H(a; f ; η) =
∫

(F×)3
f

((
x

y

) (
1 a
1 1

) (
z

1

))
η(z) d×x d×y d×z.

For a function fi ∈ C∞c (Gi(F )) and α ∈ E such that ciαᾱ 6∈ {0, 1}, we define

H(ciαᾱ; fi;Ti) =
∫
E×/F×

∫
E×

fi

((
x

x̄

) (
1 ciα
ᾱ 1

) (
y

ȳ

))
d×x d×y,

where we take the quotient measure on E×/F×. We note that the integral depends
only on ciαᾱ ∈ F×.

We say that f and (f1, f2) have matching orbital integrals if

H(a; f ; η) =
{
H(c1αᾱ; f1;T1), if a = c1αᾱ;
H(c2αᾱ; f2;T2), if a = c2αᾱ.

The existence of matching functions is proven in [Jac86].

3.1. E/F unramified. Assume that E/F is unramified. We now determine the
matching functions for fm = 1K′

m
∈ C∞c (GL(2, F )) where K ′

m is the compact open
subgroup of GL(2, F ) defined above. Let fi,m ∈ C∞c (Gi(F )) be the characteristic
function of K ′

i,m.
We begin by computing the orbital integrals of fm.

Lemma 3.1. We have

H(a; f0; η) =
{

0, if v(a) is odd, or v(1− a) > 0;
vol(UF )3, otherwise.

And we have

H(a; fm; η) =
{

vol(UF )3, if v(a) ≥ m and v(a)−m is even;
0, otherwise,

when m > 0.

Proof. These calculations can be found in [Guo96, Section 2.3]. However, in the
case of f0, those calculations are incorrect, so we include this case here. The integral
H(a; f0; η) is equal to the integral of η(yz) over the region (x, y, z) ∈ F 3 such that(

x axz/y
y z

)
.

Thus we require |x|, |y|, |z| ≤ 1, |a||x||z| ≤ |y| and |xz||a− 1| = 1.
First, it is clear that the integral vanishes if v(1− a) > 0. Next we assume that

v(a) < 0. Then we need |y| = 1 and |xz| = |a|−1. Hence we have

H(a; f0; η) = vol(UF )2
∫
|a|−1≤|z|≤1

η(z) =
{

vol(UF )3, if v(a) is even;
0, if v(a) is odd.

Finally if we assume that |a| = |a − 1| = 1. Then we clearly have H(a; f0; η) =
vol(UF )3. �

The calculations of the orbital integrals for the functions fi,m can be extracted
from the calculations in the proof of [Guo96, Proposition 2.3].
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Lemma 3.2. We have

H(αᾱ; f1,0;T1) =
{

0, if v(1− αᾱ) > 0;
vol(E×/F×) vol(UE), otherwise.

And we have

H(ciαᾱ; fi,m;Ti) =
{

vol(E×/F×) vol(UE), if vE(α) ≥ m;
0, otherwise,

when m > 0, or m = 0 and i = 2.

We recall our normalization of measures on E× and F×. We have vol(UF ) = d,
vol(UE) = d2 and

vol(E×/F×) = vol(UE)/ vol(UF ) = d.

Hence we have the following result.

Lemma 3.3. The function fm ∈ C∞c (GL(2, F )) can be matched with (1R×1,m , 0)
when m is even, and with (0,1R×2,m) when m is odd; where Ri,m denotes an order
in Di containing OE and of discriminant pm.

3.2. E/F ramified. Now assume that E/F is a ramified quadratic extension. Fix
a uniformizer $ in F such that η($) = 1, and let pn(η) denote the conductor of
η. Having fixed E, we define the function ϕm on GL(2, F ) to be the characteristic
function of

Km

(
1 0

$m−n(η) 1

)
for m ≥ 0.

Lemma 3.4. We have,

H(a;ϕn(η); η) =
{

0, if v(1− a) > 0;
vol(UF )2 vol(Un(η)

F ), otherwise.

In addition,

H(a;ϕm; η) =
{

vol(UF )2 vol(Un(η)
F ), if v(a) ≥ m− n(η);

0, otherwise,

when m > n(η).

Proof. We begin with the case that m = n(η). We have

H(a;ϕn(η); η) =
∫

(F×)3
ϕn(η)

(
x ax/y
yz z

)
η(y) d×x d×y d×z.

Now (
x ax/y
yz z

)
∈ Kn(η)

(
1 0
1 1

)
if and only if (

x(1− a/y) ax/y
z(y − 1) z

)
∈ Kn(η).

This holds if and only if z ∈ UF , y ∈ Un(η)
F and both |x(1−a)| = 1 and |x| ≤ |a|−1.

Hence we deduce that the integral vanishes if |1− a| < 1 and otherwise is equal to
vol(UF )2 vol(Un(η)

F ).
7



The calculations in the case that m > n(η) can be extracted from [Guo96, Sec-
tion 2.4]. �

The following lemma can be obtained from the proof of [Guo96, Proposition 2.3].

Lemma 3.5. We have

H(ciαᾱ; fi,0;Ti) =
{

0, if v(1− ciαᾱ) > 0;
vol(UE) vol(E×/F×), otherwise,

and

H(ciαᾱ; fi,m;Ti) =
{

vol(UE) vol(E×/F×), if vE(α) ≥ m;
0, otherwise,

when m > 0.

We recall our normalization of measures on E× and F×. We write E = F [
√
D]

with |D| = 1 or q−1. Then we have have vol(UF ) = d, vol(Un(η)
F ) = dq−n(η)(1 −

q−1)−1, vol(UE) = d2|∆E |
1
2
F and

vol(E×/F×) = 2 vol(UE)/ vol(UF ) = 2d|∆E |
1
2
F .

Lemma 3.6. For m ≥ 0 the function

2(1− q−1)ϕm+n(η)

can be matched with
(
1R×1,m+n(η)

,1R×2,m+n(η)

)
; where Ri,m+n(η) denotes an order in

Di containing OE and of discriminant pm+n(η).

We shall also need the calculation of the orbital integrals when m = 0. We begin
with the integral on GL(2).

Lemma 3.7. For a 6= 0, 1 we have

H(a;ϕ0; η) =


2 vol(UF )2 vol(Un(η)

F ), if η(a) = 1 and v(1− a) ≤ 0;
2 vol(UF )2 vol(Un(η)

F ), if η(a) = 1 and 0 ≤ v(1− a) ≤ n(η)− 1;
vol(UF )2 vol(Un(η)

F ), if v(1− a) = n(η);
0, otherwise;

Proof. For ease of notation we set n = n(η). Then we have, as in [Guo96, Section
2.4], that H(a;ϕ0; η) is equal to the integral of η(y) over the region {(x, y, z) ∈ F 3}
which satisfies

(1) |z| = |1− a|−1|x|−1

(2) 1 ≤ |1− a||x|
(3) |$n||a||x| ≤ |y|
(4) |y − 1| ≤ |$|n|1− a||x|
(5) |x||y − a| ≤ |y|.

First we consider the case that |a| > 1. Then these conditions become

(1) 1 ≤ |a||x|
(2) |y − 1| ≤ |$|n|a||x| ≤ |y|
(3) |x||y − a| ≤ |y|.
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Thus we have |y− 1| ≤ |y| and hence |y| ≥ 1. Now if |y| = 1, then these conditions
reduce to |ax| = 1 and |y−1| ≤ |$|n. On the other hand if |y| > 1 then |y−1| = |y|
and we deduce that |y| = |$|n|ax|. As we also need |y − a| ≤ |$|n|a|, it must be
that y = ay0 with y0 ∈ UnF .

Next we consider the case that |a| < 1. In this case these conditions become
(1) 1 ≤ |x|
(2) |$|n|a||x| ≤ |y|
(3) |y − 1| ≤ |$|n|x|
(4) |x||y − a| ≤ |y|.

We note first that if |x| = 1 then all we require is that y ∈ UnF . On the other
hand if |x| > 1 then we require |y − a| < |y| and hence |y| = |a|, this implies that
|x| = |$|−n and hence that y = ay0 with y0 ∈ UnF .

Now consider the case |1− a| < 1. Then our conditions become
(1) 1 ≤ |1− a||x|
(2) |y − 1| ≤ |$|n|1− a||x| ≤ |1− a||y|
(3) |x||y − a| ≤ |y|.

First we note that since |y−1| ≤ |1−a||y|, we require that |y−1| ≤ |1−a|. On the
other hand since this forces |y| = 1 we also need |x| ≤ |$|−n. Since we also require
|1− a|−1 ≤ |x| we deduce that this region is empty unless |$|n ≤ |1− a|, which we
now assume to be the case. We note that the conditions we need to satisfy are

(1) |1− a|−1 ≤ |x| ≤ |$|−n
(2) |y − 1| ≤ |$|n|1− a||x|
(3) |x||y − a| ≤ 1.

We note that if |x| < |$|−n, then we have |y−1| < |1−a| and hence |y−a| = |a−1|.
From this it follows that |x| = |a − 1|−1 and y ∈ UnF . On the other hand if
|x| = |$|−n then we just require that y = ay0 with y0 ∈ UnF .

Finally, we consider the case that |1− a| = |a| = 1. Then the conditions become
(1) 1 ≤ |x|
(2) |y − 1| ≤ |$|n|x| ≤ |y|
(3) |x||y − a| ≤ |y|.

We note that if |y − 1| < 1 then |y − a| = 1 which forces |x| = 1 and we require
y ∈ UnF . When 1 < |y − 1| we have |y| = |y − 1| = |y − a|, this then forces |x| = 1
which then implies that |y − 1| ≤ |$|n, a contradiction. So suppose |y − 1| = 1,
then we must also have |y| = 1 and |x| = |$|−n. Since we need |y − a| ≤ |$|n, we
also need y = ay0 with y0 ∈ UnF . This concludes the proof. �

Let us now consider the integrals on G1(F ) with respect to the non-split torus.
We now make the assumption that p > 2. In this case a maximal order in D1 is
given by

R =
{(

α β
β̄ ᾱ

)
∈ D1 : |α|E , |β|E ≤ |$E |−1

E , |(α− β)− (α− β)|E ≤ 1
}
.

We define f to be the characteristic function of R×.

Lemma 3.8. Assume that p > 2. Then we have

H(αᾱ; f ;T ) =

 vol(UE) vol(E×/F×), if v(1− αᾱ) ≤ 0;
1
2 vol(UE) vol(E×/F×), if v(1− αᾱ) = 1;
0, otherwise.
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Proof. As in [Guo96, Section 2.4] we are reduced to computing the volume of (x, y)
with x ∈ E×, y ∈ E×/F× such that(

x αxyȳ−1

ᾱx̄ȳy−1 x̄

)
∈ K ′.

Thus we need
(1) |xx̄(1− αᾱ)| = 1
(2) |x|E ≤ |$E |−1

E , |αx|E ≤ |$E |−1
E

(3) |x− x̄−
(
αxyȳ−1 − ᾱx̄ȳy−1

)
|E ≤ 1.

We note first that if |α|E > 1, then |x|E = |α|−1
E and so the third condition is

automatically satisfied. On the other hand if |1−αᾱ|E = 1, then we need |x|E = 1
and again the third condition is automatically satisfied.

We are left then to consider the case that |α|E = 1 and |1 − αᾱ| < 1. In this
case we need |x|2E = |1−αᾱ|−1

E . Thus the region is empty unless v(1−αᾱ) = 1. So
suppose v(1−αᾱ) = 1. We need to check the last condition. We write x = a+b

√
$

with |a| ≤ 1 and |b| = q−1.
We write α = c + d

√
$ with |c| = 1 and |d| ≤ 1. Then since we are assuming

that v(1− αᾱ) = 1 we have c ∈ ±U1
F .

Write z = yȳ−1 = e+ f
√
$. Since zz̄ = 1 we have that e ∈ ±U1

F .
Now we have

max{1, |x− x̄− (αxz − ᾱx̄z̄) |}
equal to

max{1, 2b
√
$ −

(
ceb
√
$ + ceb

√
$

)
}

which equals
max{1, (1− ce) b

√
$},

which is equal to 1 if and only if ce ∈ U1
F . This concludes the calculation. �

Therefore we have the following lemma.

Lemma 3.9. Assume that p > 2. Then the function

(1− q−1)ϕ0

can be matched with
(
1R×1,0 , 0

)
, where R1,0 is a maximal order in D1 which contains

OE.

4. Local representation theory

4.1. Nonarchimedean fields. In this section we recall some results from [GP91]
on the existence of test vectors in local representations.

We take F to be a non-archimedean local field and we denote by D the (unique)
quaternion division algebra over F . We take π to be a unitarizable admissible
generic representation of GL(2, F ) with trivial central character, and, when it exists,
we denote by π′ the Jacquet-Langlands transfer of π to a representation of D×. Let
n(π) be the order of the conductor of π, i.e., π has conductor pn(π). We denote by
Z(F ) the center of GL(2, F ) and by Z ′(F ) the center of D×.

We take E to be a quadratic field extension of F . We fix embeddings of E into
M2(F ) and into D. We let η denote the quadratic character of F× associated to
E/F by class field theory and we denote by πE the base change of π to GL(2, E).
Also, let OE denote the integral closure of O in E.

10



We recall the following result due to Tunnell [Tun83] and Waldspurger [Wal85].

Proposition 4.1. At most one of π and π′ admit a non-zero E×-invariant linear
form `. The space of π admits such an ` if ε(1/2, πE) = η(−1). Otherwise, i.e.,
if ε(1/2, πE) = −η(−1), then π′ admits such an `. Moreover, the linear form ` is
unique up to scaling.

We now assume that E/F is unramified. We note that in this case ε(1/2, πE) =
(−1)n(π) and so π admits a non-zero E×-invariant linear form if and only if n(π)
is even. Then we have from [GP91, Proposition 2.6] the following.

Proposition 4.2. If n(π) is even then the space πK1,n(π) is one dimensional and
the functional ` does not vanish identically on this space. If n(π) is odd then the
space (π′)K2,n(π) is one dimensional and the functional ` does not vanish identically
on this space.

We now assume that the extension E/F is ramified. We have from [GP91,
Proposition 2.6] the following.

Proposition 4.3. Assume that n(π) ≤ 1. If ε(1/2, πE) = η(−1) then the space
πK1,n(π) is one dimensional and the functional ` does not vanish identically on this
space. If ε(1/2, πE) = −η(−1) then the space (π′)K2,n(π) is one dimensional and
the functional ` does not vanish identically on this space.

Next we consider the case that n(π) ≥ 2. We fix a uniformizing element $E in
E. Then from [GP91, Remark 2.7] we have the following propositions.

Proposition 4.4. Assume that n(π) ≥ 2. When ε(1/2, πE) = δE/F (−1), the space
πK1,n(π) is two dimensional. There is a unique line in this subspace fixed by $E

and the functional ` does not vanish identically on this line. When ε(1/2, πE) =
−δE/F (−1), the space (π′)K

′
2,n(π) is two dimensional. There is a unique line in this

subspace fixed by $E and the functional ` does not vanish identically on this line.

4.2. Archimedean fields. Suppose now that we have a representation π of PGL(2)
over either R or C. Fix the additive character ψ of F to be ψ(x) = e2πix or
ψ(z) = e4πi<z according to whether the base field is R or C. We take T to be
the diagonal torus inside PGL(2). Then we have the following result from [Popb,
Proposition 4].

Proposition 4.5. Let W be the minimal K-type in the Whittaker model W (π, ψ)
such that dimWT = 1. Then ζ(s,W,ψ) = L(s, π) for some W ∈ WT .

Moreover Popa, [Popb, p. 10], describes the minimal K-type for which WT 6= 0
for all such π.

5. Local distributions

5.1. Nonarchimedean fields. Let F be a nonarchimedean local field. Let E be
either a quadratic extension of F or else F⊕F . Let η be the corresponding character
of F×. We denote by pn(η) the conductor of η. We define

τ(η, ψ) =
∫

p−n(ψ)−n(η)
η(x) ψ(x) d×x.

We take π to be an irreducible generic unitary representation of GL(2, F ) with
trivial central character. We denote by pn(π) the conductor of π. We denote by

11



W(π, ψ) the Whittaker model of π with respect to the character ψ. We fix a
GL(2, F )-invariant inner product [ , ] on W(π, ψ). We denote by πE the base
change of π to an irreducible admissible representation of GL(2, E).

We define, for s ∈ C with <s� 0 and W ∈ W(π, ψ),

ζ(s,W,ψ) =
∫
F×

W

(
x

1

)
|x|s− 1

2 d×x

and

ζ(s,W, χ, ψ) =
∫
F×

W

(
x

1

)
χ(x) |x|s− 1

2 d×x,

where χ is a character χ : F× → C×. As is well known, these integrals converge
for <s sufficient large and have an analytic continuation to C. We recall that there
exists a unique vector W 0 ∈ W(π, ψ)Kn(π) such that

ζ(s, π(diag($−n(ψ), 1))W 0, ψ) = L(s, π)

for any uniformizer $ in F .
Having fixed ψ we define, for W ∈ W(π, ψ),

λ(W ) =
ζ(1/2,W, ψ)
L(1/2, π)

and

λη(W ) =
ζ(1/2,W, η, ψ)
L(1/2, π ⊗ η)

.

Having fixed E (and hence η) we define, for f ∈ C∞c (G(F )),

Θπ,ψ(f) =
∑
i

λ(π(f)Wi)λη(Wi)

where {Wi} is an orthonormal basis of W(π, ψ).
We now compute Θπ,ψ(f) for certain functions f depending on E/F and π.

5.1.1. E/F split. We take f = vol(Kn(π))−11Kn(π) . Then we clearly have the
following.

Lemma 5.1. For f = vol(Kn(π))−11Kn(π) we have

Θπ,ψ(f) =
1

[W 0,W 0]
.

5.1.2. E/F unramified. We take f = vol(Kn(π))−11K′
n(π)

. Then we have, as in
[Guo96, Proof of Proposition 3.1],

Θπ,ψ(f) =
λ(π(w)W 0)λη(π(w)W 0)

[W 0,W 0]
,

where

w =
(

1
−1

)
.

Now
λ(π(w)W 0) = ε(1/2, π)

and
λη(π(w)W 0) = ε(1/2, π ⊗ η)λη(W 0) = ε(1/2, π ⊗ η)η($n(ψ)),

which gives the following result.
12



Lemma 5.2. For f = vol(Kn(π))−11K′
n(π)

we have

Θπ,ψ(f) =
ε(1/2, πE)η($n(ψ))

[W 0,W 0]
.

5.1.3. E/F ramified. We now assume that E/F is ramified and p > 2. We fix a
uniformizer $ of F such that η($) = 1. We wish to compute Θπ,ψ(ϕn(π)).

Lemma 5.3. We have

Θπ,ψ(ϕn(π)) =
1

[W 0,W 0]
ε(1/2, πE)

L(1/2, π ⊗ η)
τ(η, ψ)

d
.

Proof. We follow [Guo96, Section 3.3]. Arguing as in there we get

Θπ,ψ(ϕn(π)) =
1

[W 0,W 0]
ε(1/2, πE)

L(1/2, π ⊗ η)

∫
F×

π

((
1 $−n(η)

0 1

)
W 0

) (
a

1

)
η(a) d×a.

We note that we have((
1 $−n(η)

0 1

)
W 0

) (
a

1

)
= W 0

(
a a$−n(η)

0 1

)
= W 0

((
1 a$−n(η)

0 1

) (
a 0
0 1

))
= ψ(a$−n(η))W 0

(
a 0
0 1

)
and hence∫
F×

π

((
1 $−n(η)

0 1

)
W 0

) (
a

1

)
η(a) d×a =

∫
F×

W 0

(
a 0
0 1

)
ψ(a$−n(η))η(a) d×a.

Writing this integral as a sum over F×/UF and using the vanishing properties of
the integrals ∫

UF

ψ(a$−n)η(a) d×a

we get the integral above is equal to

W 0

(
$−n(ψ)

1

)
τ(η, ψ).

Using the fact that

W 0

(
$−n(ψ)

1

)
= d−1

gives the result. �

5.2. Archimedean fields. We now consider the archimedean case and take F = R
or C. We only consider the case that E = F ⊕ F . Fix the additive character ψ
of F to be ψ(x) = e2πix or ψ(z) = e4πi<z according to whether F = R or C.
Let [ , ] be an invariant inner product on W (π, ψ). Define ζ and Θπ,ψ as in the
non-archimedean setting.
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In this case we choose f ∈ C∞c (GL(2, F )) to project onto a non-zero vector in
WT where W is the minimal K-type for which WT 6= 0 as in [Popb, Proposition
4]. In this case we clearly have

Θπ,ψ(f) =
1

[W 0,W 0]

where W 0 ∈ WT such that ζ(s,W 0, ψ) = L(s, π).

6. Global result

In this section we prove Theorem 1.1. We now take F to be a number field. For
a finite place v in F let pv denote the prime ideal in Ov the ring of integers of Fv.
We take E to be a quadratic extension of F which is split at the infinite places of
F . For each place v of F we denote by OEv the integral closure of Ov in Ev. We
let η denote the quadratic character of F×\A×

F associated to E/F by class field
theory. For each place v of F we denote by p

n(ηv)
v the conductor of ηv.

We have defined compact open subgroups of the local groups GL(2, F ) in Section
2. We use the same notation here with the addition of a subscript v, for example,
Kv = GL(2,Ov).

6.1. Measures. We fix a non-trivial character ψ : F\AF → C× as in [Guo96,
Section 4.1]. We write ψ =

∏
v ψv where ψv is a character of Fv. We use these local

characters to form measures on the local groups as in Section 2. Globally we give
all discrete subgroups the counting measure. We take the measure on groups over
AF to be the product of the local measures defined with respect to the characters
ψv. For groups over AE we define measures in the same way relative to the pull
back of ψ via the trace map.

We define dF =
∏
v dv where for each v we have

dv =

 vol(Ov), if Fv is non-archimedean;
vol([0, 1]), if Fv is real;
1
2 vol ({x+ iy : 0 ≤ x, y ≤ 1}) , if Fv is complex.

We note that dF = |∆F |−
1
2 where ∆F is the discriminant of F .

We take the Tamagawa measure on GL(2,AF ) and on the adelic points of inner
forms of GL(2).

6.2. Proof. Fix an irreducible cuspidal automorphic representation π of GL(2,AF )
with trivial central character. We consider the set X(E/F ) of isomorphism classes
of pairs {(G,T )} where G is an inner form of GL(2) and T is a subtorus of G defined
over F with T (F ) ∼−→E×. It is clear from the local results above that we have the
following.

Proposition 6.1. Suppose that ε(1/2, πE) = −1. Let (G,T ) ∈ X(E/F ) such that
π transfers to a representation π′ of G(AF ). Then the only T (AF )-invariant linear
form on π′ is zero.

Suppose that ε(1/2, πE) = 1. Then there exists a unique pair (G,T ) ∈ X(E/F )
such that π transfers to a representation π′ of G(AF ) and such that the space of
π′ admits a non-zero T (AF )-invariant linear form. Moreover such a linear form is
unique up to scaling.
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We assume from now on that ε(1/2, πE) = 1 and fix (G,T ) as in the proposition.
We identify G(F ) as D×, where D is either M2(F ) or a quaternion algebra over F ,
and we fix an embedding E ↪→ D which induces E× ∼−→T (F ). We denote by π′

the Jacquet-Langlands transfer of π to G(AF ).
For n ∈ Z≥0 we denote by RDv,n an order of reduced discriminant pnv in Dv =

D ⊗F Fv which contains OEv . We denote by KD
v,n the compact open subgroup

(RDv,n)
× of G(Fv).

For each finite place v of F we denote by p
n(πv)
v the conductor of πv. We form

W(π, ψ), the Whittaker model of π with respect to ψ, of functions

Wϕ(g) =
∫
F\AF

ϕ

((
1 x
0 1

)
g

)
ψ(x) dx.

We fix inner products on the local Whittaker models, W(πv, ψv), compatible with
the L2-inner product on the space of π.

At each place v we fix an element Wv ∈ W(πv, ψv). If v is non-archimedean then
Wv ∈ W(πv, ψv)Kn(πv) is such that ζ(s, π(diag($−n(ψv), 1))Wv, ψv) = L(s, πv). If v
is archimedean then we take Wv ∈ W(πv, ψv) as in [Popb, Proposition 4]. We take
ϕ0 ∈ π such that Wϕ0 =

∏
vWv.

Let S denote the set of places v of F such that v satisfies one of the following
conditions,

(1) v is archimedean,
(2) v is ramified in E,
(3) n(ψv) 6= 0, or
(4) πv is ramified.

We let {ϕi} denote an orthonormal basis of πK
S

and {ϕ′i} an orthonormal basis
of (π′)K

S

. We take fS =
∏
v∈S fv to be a smooth function on GL(2,AS). Let A

denote the diagonal torus in GL(2). Then the fundamental identity obtained from
the relative trace formula [Jac86] is that

(1)
∑
{ϕi}

∫
Z(AF )A(F )\A(AF )

(π(fS)ϕi)(a) da
∫
Z(AF )A(F )\A(AF )

ϕi(b)η(det b) db

is equal to

(2)
∑
{ϕ′i}

∫
Z′(AF )T (F )\T (AF )

(π′(f ′S)ϕ′i)(s) ds
∫
Z′(AF )T (F )\T (AF )

ϕ′i(t) dt.

For each v ∈ S we fix an orthonormal basis {Wv,i} of W(πv, ψv). For v 6∈ S we
take Wv to be the essential vector in W(πv, ψv), i.e. Wv is the vector in W(πv, ψv)
which is invariant under GL(2,Ov) and Wv(kv) = 1 for all kv ∈ GL(2,Ov). Ten-
soring these up gives a basis {ϕi} of πK

S

. Then the left hand side of the identity
above is equal to

L(1/2, πE)∏
v 6∈S [Wv,Wv]

∏
v∈S

Θπv,ψv (fv),

where for v ∈ S we have

Θπv,ψv (fv) =
∑
i

λv(πv(fv)Wv,i)ληv (Wv,i).
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We now proceed to choose suitable test functions fv, for v ∈ S, to plug into the
trace formula identity. We write S = S0 q S1 q S2 where

S0 = {v ∈ S : v is split in E},
S1 = {v ∈ S : v is inert in E},

and
S2 = {v ∈ S : v is ramified in E}.

We further write S0 = S′0 q S′′0 where

S′0 = {v ∈ S0 : v is non-archimedean},
and

S′′0 = {v ∈ S0 : v is archimedean}.
For v ∈ S′0, we take

fv = vol(Kn(πv))
−11Kv,n(πv) .

Hence we can take f ′v = vol(KD
v,n(πv)

)−11KD
v,n(πv)

. By Lemma 5.1 we have

Θπv,ψv (fv) =
1

[Wv,Wv]
.

For v ∈ S′′0 , we take fv as in Section 5.2. Then

Θπv,ψv (fv) =
1

[Wv,Wv]
.

For v ∈ S1, we take

fv = vol(Kv,n(πv))
−11K′

v,n(πv)
.

We note that, by Lemma 2.2,

vol(Kv,n(πv)) =
{

d4
v(1− q−2

v ), if n(πv) = 0;
d4
vq
−n(πv)
v (1− q−1

v ), if n(πv) > 0.

On the other hand, by Lemma 2.3,

vol(KD
v,n(πv)

) =
{

d4
v(1− q−2

v ), if n(πv) = 0;
d4
vq
−n(πv)
v (1 + q−1

v ), if n(πv) > 0.

Hence, by Lemma 3.3, we can take

f ′v =
C(πv)

vol(KD
v,n(πv)

)
1KD

v,n(πv)
,

where

C(πv) =
{

1, if n(πv) = 0;
q+1
q−1 , if n(πv) > 0.

Thus by Lemma 5.2 we have

Θπv,ψv (fv) =
ε(1/2, πE,v)ηv($)n(ψv)

[Wv,Wv]
.

For v ∈ S2, we take

fv = vol(Kv,n(πv))
−1ϕv,n(πv).

By Lemma 2.2,

vol(Kv,n(πv)) =
{

d4
v(1− q−2

v ), if n(πv) = 0;
d4
v(1− q−1

v )q−n(πv)
v , if n(πv) > 0.
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And by Lemma 2.3

vol(KD
v,n(πv)

) =


d4
v(1− q−2

v ), if n(πv) = 0;
d4
v(1− q−1

v )q−1
v , if n(πv) = 1 and Dv = M2(Fv);

d4
v(1 + q−1

v )q−1
v , if n(πv) = 1 and Dv 6= M2(Fv);

d4
v(1− q−1

v )q−n(πv)
v , if n(πv) > 1.

Hence we can take, by Lemma 3.6 and Lemma 3.9,

f ′v =
C(πv)

vol(KD
v,n(πv)

)
1KD

v,n(πv)
,

where

C(πv) =


(1− q−1

v )−1, if n(πv) = 0;
1
2 (1− q−1

v )−1, if n(πv) = 1 and Dv = M2(Fv);
1
2 (1 + q−1

v )(1− q−1
v )−2, if n(πv) = 1 and Dv 6= M2(Fv);

1
2 (1− q−1

v )−1, if n(πv) > 1.

Then by Lemma 5.3 we have

Θπv,ψv (fv) =
1

[Wv,Wv]
ε(1/2, πE,v)

L(1/2, πv ⊗ ηv)
τ(ηv, ψv)

dv
.

We note that when n(πv) = 0 we have

Θπv,ψv (fv) =
1

[Wv,Wv]
ε(1/2, πE,v)

τ(ηv, ψv)
dv

.

We use these choices for fv in our trace formula identity, together with the facts
that ε(1/2, πE) = 1, ∏

v

τ(ηv, ψv)
|τ(ηv, ψv)|

= W (η) = 1

and that at the places v of F which ramify in E we have

|τ(ηv, ψv)| = dvq
−n(ηv)

2
v (1− q−1

v )−1.

For (1), this yields

L(1/2, πE)
[ϕ0, ϕ0]

∏
v∈S(E)

q
−n(ηv)

2
v (1− q−1

v )−1
∏

v∈S2(E,π)

1
L(1/2, πv ⊗ ηv)

,

where S(E) denotes the set of places of F which ramify in E and S2(E, π) denotes
the set of places of F which are ramified for both E and π.

On the other hand, (2) becomes

|
∫
T
ϕ(t) dt|2

[ϕ,ϕ]

∏
v∈S1(E,π)

qv + 1
qv − 1

∏
v∈S(E)

C(πv),

where S1(E, π) denotes the set of places of F which are unramified, inert in E and
at which π is ramified, and S(E) is the of places of F ramified in E and C(πv) is
defined as above. Here ϕ ∈ π′ is a non-zero vector such that,

(1) at each finite place v, ϕ is fixed by KD
v,n(πv)

,
(2) at each finite place v which is ramified in E, ϕ is fixed by T (Fv), and
(3) at each archimedean place v ϕ lies in WT as in [Popb, Proposition 4].
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These conditions determine ϕ ∈ π′ up to a non-zero scalar.
We note that if v is a place such that n(πv) = 1 then we have

L(s, πv) = (1 + q
−s− 1

2
v )−1

if Dv = GL(2, Fv) and

L(s, πv) = (1− q
−s− 1

2
v )−1

if Dv 6= GL(2, Fv). And, of course, L(s, πv) ≡ 1 if n(πv) > 1. Hence we deduce
that

L(1/2, πE) = C(π,E)
[ϕ0, ϕ0]
[ϕ,ϕ]

∣∣∣∣∫
T

ϕ(t) dt
∣∣∣∣2

where

C(π,E) =
√
dE/F

∏
v∈S1(E,π)

qv + 1
qv − 1

∏
v∈S2(E,π)

(A(πv)L(1/2, πE,v)) .

Here dE/F denotes the discriminant of E/F , S2(E, π) denotes the set of places of
F which are ramified in E and at which π is ramified, and we define

A(πv) =
{

1
2 (1 + q−1

v ), if n(πv) = 1;
1
2 , otherwise.
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