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Let π be a cusp form on GL(2) over a number field F and let E be a quadratic extension

of F . Denote by πE the base change of π to E and by " a unitary character of A×E/E×. We

use the relative trace formula to give an explicit formula for L(1/2,πE ⊗") in terms of

period integrals of Gross–Prasad test vectors. We give an application of this formula to

equidistribution of geodesics on a hyperbolic 3-fold.

1 Introduction

Let us begin by recalling relevant results on central L-values for GL(2). Let F be a number

field and fix a quadratic extension E/F . Denote the norm map from E to F by NE/F and

the adeles of a number field K by AK . We will take π to be a cuspidal automorphic

representation of GL(2, AF ) whose central character ωπ is trivial on NE/F A×E . That is,

either ωπ = 1 or ωπ = ηE/F , the quadratic character attached to E/F . Now take a unitary

character

" : A×E/E× → C×

such that "|A×F = ωπ . Assume that the ramifications of π and " are disjoint. We will be

interested in a formula for the central L-value of the automorphic representation πE ⊗"
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of GL(2, AE ). For GL(2) L-values, typically one wants a formula in terms of either period

integrals or Fourier coefficients, as these are easier to compute. In this paper, we will

establish a formula in terms of period integrals. For a formula for L(1/2,π ) in terms of

Fourier coefficients when ωπ = 1 and F is totally real, see [24], [1].

Let D be a quaternion algebra defined over F such that

(1) E ↪→ D and

(2) π transfers, in the sense of Jacquet–Langlands, to a representation π D of

D×(AF ).

We allow for the possibility that D(F ) % M2(F ), so at least one such D always exists. In

this case we take π for π D.

Given such a quaternion algebra D, we define period integrals

P D(ϕ) =
∫

E×A×F \A×E

ϕ(t )"−1(t ) dt

for ϕ ∈ π D. We note that the integral makes sense because of the compatibility between

" and ωπ . Waldspurger [25] and Jacquet [14] proved that L(1/2,πE ⊗") = 0 if and only if

P D(ϕ) = 0 for all D and ϕ ∈ π D as above.

Note that the function

ϕ (→ P D(ϕ)

is an element of HomA×E
(π D,"). It is known that

dimC HomA×E
(π D,") ≤ 1,

and moreover, it is clear that it is nonzero if and only if

HomE×v

(
π D

v ,"v

)
*= 0

for all places v of F .

The L-function L(s,πE ⊗") is symmetric and when the sign in the functional

equation is −1, the period integrals are forced to vanish for local reasons, namely the

fact that

HomE×v

(
π D

v ,"v

)
= 0

for some place v of F .
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Let us assume from now on that the sign in the functional equation is +1. In this

case, there is a unique quaternion algebra D/F such that

HomE×v

(
π D

v ,"v

)
*= 0

for all places v of F . The algebra D can be characterized by local ε-factors; see [9,

Proposition 1.1]. Let us fix this D.

In [25], assuming ωπ = 1, Waldspurger proved that for any ϕ ∈ π D,

L(1/2,πE ⊗") = 1
ζ (2)

∏

v

αv(E ,ϕ,")
|P D(ϕ)|2

(ϕ,ϕ)
,

where the αv(E ,ϕ,")’s (almost all 1) are local constants defined in terms of certain in-

tegrals. It is convenient to write the formula in terms of |P D(ϕ)|2/(ϕ,ϕ) because this

quantity is invariant under scaling. There are two points we wish to emphasize about

Waldspurger’s work. First, Waldspurger uses the theta correspondence to establish his

result. Second, the constants αv(E ,ϕ,") are not as explicit as one would like for appli-

cations. In fact, it is not even clear from Waldspurger’s formula that L(1/2,πE ⊗") ≥ 0.

(This is predicted by the generalized Riemann hypothesis. It is immediate from our for-

mula below, and was proven by Guo [10] and Jacquet–Chen [15] using the relative trace

formula.)

It seems likely that in order to get the most explicit formula possible, one needs to

choose a specific vector ϕ ∈ π D. In the case that the ramifications of π and " are disjoint,

the work of Gross and Prasad [9] provides a nice test vector ϕ ∈ π D such that *(ϕ) *= 0

for any nonzero * ∈ HomA×E
(π D,"). Thus, the result of Waldspurger and Jacquet can be

rephrased as L(1/2,πE ⊗") = 0 if and only if P D(ϕ) = 0, with ϕ equal to the Gross–Prasad

test vector. We also remark that a formula in terms of the Gross–Prasad test vector is

particularly well suited for certain applications [22].

Subsequent to Waldspurger’s work, there has been considerable work devoted to

obtaining an explicit formula for L(1/2,πE ⊗") in terms of P D(ϕ) for a specific choice of

ϕ ∈ π D. We mention four results. First, in [7] Gross obtained a formula for L(1/2,πE ⊗")

in terms of the Gross–Prasad test vector when F = Q, E is an imaginary quadratic field, π

is holomorphic of weight 2 and inert prime level, and " is unramified. Then in [27], Zhang

generalized Gross’s formula to F totally real, E/F imaginary quadratic, π holomorphic

of parallel weight 2 and arbitrary level N, and " unramified above N and where E/F

is ramified. However, the test vector ϕ that Zhang must choose is not necessarily the
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Gross–Prasad test vector; it is locally away from the places of F that ramify in E . Xue

[26] generalized Zhang’s result to π holomorphic of arbitrary even weight, again with

ramification conditions. (Again, his test vector is not the one given by Gross–Prasad.) For

real quadratic extensions, Popa [19] obtained a formula for L(1/2,πE ⊗") in terms of the

Gross–Prasad test vector when F = Q, E is a real quadratic field, π has even weight with

square-free level prime to the discriminant of E , and " is unramified. These results are

all established using the theta correspondence and the Rankin–Selberg method.

Jacquet developed another method to study period integrals and L-values, known

as the relative trace formula. In this paper, we continue the work of [13], [14], [10], and [15]

to prove an explicit version of Waldspurger’s formula for L(1/2,πE ⊗"), in the generality

given in the first paragraph, in terms of P D(ϕ) when ϕ ∈ π D is the Gross–Prasad test

vector. We would like to point out that the relative trace formula, while perhaps having

greater analytic difficulties, is a much more general method for studying L-values and

periods than the theta correspondence (see, for example, [16] for exact formulae for

period integrals over unitary groups). Even for GL(2), the formula we have obtained is

more general than the explicit results obtained to date via the theta correspondence. For

instance, F need not be totally real and ωπ need not be trivial.

Let us briefly outline our method. We define G = D× and σ = π D. For f ∈
C∞

c (G(AF )), consider the distribution

f (→ Jσ ( f ) =
∑

ϕ

∫
(σ ( f )ϕ)(t )"(t )−1 dt

∫
ϕ(t )"(t )−1 dt ,

where the sum is taken over an orthonormal basis {ϕ} of σ and the integrals are taken

over E×A×F \A×E . By local considerations it is known that the distribution factors into a

product of local ones, however this factorization is not unique. The work of Jacquet and

Chen [15, Theorem 2] uses the relative trace formula to give a canonical decomposition

of this distribution.

Let f ∈ C∞
c (G(AF )) be of the form f =

∏
v0∈S0

fv0 f S0 , with f S0 the unit in the Hecke

algebra of G away from S0. Then Jacquet and Chen prove that

Jσ ( f ) = 1
2

∏

v0∈S0

J̃σv0

(
fv0

) ∏

v0∈S0
v0 inert

(
ε
(
1, ηv0 ,ψv0

)
2L

(
0, ηv0

)) LS0 (1, η)LS(1/2,πE ⊗")
LS0 (1,π , Ad)

,

where S denotes the places of F and S0, η = ηE/F , and the J̃σv0
’s are certain local distri-

butions defined in Sections 2 and 3. To obtain our formula, we choose test functions fv0
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such that

Jσ ( f ) = |P D(ϕ)|2,

where ϕ is the Gross–Prasad test vector. We then compute the local distributions which

gives a formula for L(1/2,πE ⊗") in terms of P D(ϕ) and L(1,π , Ad) (Theorem 4.1). Now

L(1,π , Ad) is essentially (ϕπ ,ϕπ ), where ϕπ is a newvector for π . Since one may prefer

a formula in terms of (ϕπ ,ϕπ ) for certain applications, we also rewrite our formula for

L(1/2,πE ⊗") in terms of (ϕπ ,ϕπ ) (Theorem 4.2). The precise statement of these formulas

is given in Section 4. We have attempted to make that section self-contained for the con-

venience of the reader. In Sections 2 and 3, we work out the necessary local calculations.

There are several applications of these Waldspurger-type formulas. In Section 5,

we use Theorem 4.1 to obtain results about equidistribution of geodesics on a hyperbolic

3-fold. Brooke Feigon, together with the second author also used this formula to study

average L-values [5]. For more arithmetic applications of such formulas, see for example,

[2], [21], and [19].

Lastly, we remark that this approach can be used to obtain an explicit

Waldspurger-type formula for arbitrary central character and ramification conditions

with any reasonable test vector ϕ. The assumptions above are made for simplicity and

are not essential to the methods used here. The central character assumption is present

in [15] and the ramification assumption is made for the sake of the Gross–Prasad test

vector.

2 Non-Archimedean Calculations

We fix F , a non-Archimedean local field of characteristic zero. We let OF denote the ring

of integers in F and let pF denote the prime ideal of OF .

2.1 Split case

We fix an additive character ψ of F of conductor n(ψ ), i.e. ψ is trivial on p−n(ψ )
F but is

nontrivial on p−n(ψ )−1
F . We take the Haar measure on F which is self-dual with respect to

ψ and take the measure

d×x = L(1, 1F )
dx
|x|F
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on F×. We note that

vol(OF , dx) = vol(UF , d×x) = q−
n(ψ )

2 .

We fix a unitary character " of F× of conductor pn(")
F .

Suppose now that π is an irreducible generic unitary representation of GL(2, F )

with trivial central character. We consider the Whittaker model W(π ,ψ ) of π with respect

to the character ψ . We take the inner product on W(π ,ψ ), given by

(W1, W2) =
∫

F×
W1

(
a

1

)

W2

(
a

1

)

d×a.

Let

K0(n) =
{(

a b

c d

)

∈ GL(2,OF ) : c ∈ pn
F

}

.

Let n(π ) be the conductor of π , i.e. the minimal n such that π has a K0(n)-fixed vector.

Then the space πK0(n(π )) is one-dimensional and any nonzero vector in this space is called

a newvector.

Let Wπ denote the newvector in W(π ,ψ ) normalized so that Wπ (diag(-−n(ψ ), 1)) =
vol(UF )−1, and hence such that

Z (s,π (diag(-−n(ψ ), 1))Wπ ) = L(s,π ),

where Z (s, W) denotes the local zeta integral of W ∈W(π ,ψ ). For future use we record the

following lemma. The proof is straightforward, using the fact that one may compute the

values of W on the diagonal torus via the relation with L(s,π ) (cf. [6], [18]).

Lemma 2.1. If π is unramified, then

(Wπ , Wπ ) = vol(UF )−1 L(1,π , Ad)L(1, 1F )
L(2, 1F )

.

If n(π ) = 1, then π is special and

(Wπ , Wπ ) = vol(UF )−1 1
1− q−2

= vol(UF )−1L(1,π , Ad).
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If n(π ) > 1, then

(Wπ , Wπ ) = vol(UF )−1. !

Given f ∈ C∞
c (GL(2, F )), we define

J̃π ( f ) =
∑

W

∫

F×
(π ( f )W)

(
a

1

)

"−1(a) d×a
∫

F×
W

(
b

1

)

"−1(b) d×b,

with the sum being taken over an orthonormal basis {W} of W(π ,ψ ).

We now compute J̃π ( f ) for certain choices of test function f depending on the

ramification of ".

2.1.1 " unramified

The following result is well known.

Lemma 2.2. If f is the characteristic function of K0(n(π )) divided by its volume, then

J̃π ( f ) = L(1/2,π ⊗")L(1/2,π ⊗"−1)
(Wπ , Wπ )

. !

2.1.2 " ramified

Let

h =
(

1 -−n(")

1

)

.

Then the newvector with respect to hK0(n(π ))h−1 is W′ = π (h)W′
π .

Lemma 2.3. If f is the characteristic function of hK0(n(π ))h−1 divided by its volume,

then

J̃π ( f ) = q−n(") L(1, 1F )2

(Wπ , Wπ )
.
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In particular, if π is unramified,

J̃π ( f ) = q−n(")L(1, 1F )2
L(1/2,π ⊗")L(1/2,π ⊗"−1)

(Wπ , Wπ )
. !

Proof. Note that

W′

(
a

1

)

= ψ
(
a-−n("))Wπ

(
a

1

)

.

Hence we have, for s with .s / 0,

Z (s, W′,") =
∫

F×
ψ

(
a-−n("))Wπ

(
a

1

)

"−1(a)|a|s− 1
2 d×a

=
∞∑

m=−∞
Wπ

(
-m

1

)

|-m|s− 1
2

∫

|a|=q−m
ψ

(
a-−n("))"−1(a) d×a.

We note that the integral is nonvanishing unless −m = n(ψ ), in which case we have

∫

|a|=qn(ψ )
ψ

(
a-−n("))"−1(a) d×a = "

(
-n("))−1

∫

|a|=qn(ψ )+n(")
ψ (a)"−1(a) d×a

= "
(
-n("))−1L(1, 1F )q−(n(ψ )+n("))

∫

|a|=qn(ψ )+n(")
ψ (a)"−1(a) da

= "
(
-n("))−1L(1, 1F )q−(n(ψ )+n("))ε(",ψ , da).

Hence by [20, (3.4.7)],

∣∣∣∣

∫

|a|=qn(ψ )
ψ

(
a-−n("))"−1(a) d×a

∣∣∣∣
2

= L(1, 1F )2q−(n(ψ )+n(")).

Thus we deduce that

J̃π ( f ) = 1
vol(UF )2

L(1, 1F )2q−(n(ψ )+n("))

(Wπ , Wπ )
= L(1, 1F )2q−n(")

(Wπ , Wπ )
.

"
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2.2 Nonsplit case

We now take E/F to be a quadratic extension of F . Let η denote the quadratic character

of F× associated to E , and let D denote the quaternion division algebra over F . We fix

embeddings of E× into GL(2, F ) and D×.

Let π be an irreducible generic unitary representation of GL(2, F ) with ωπ ∈ {1, η}.
When it exists, denote by πD the Jacquet–Langlands transfer of π to D×. We fix inner

products on π and πD.

Fix a unitary character " : E× → C× such that "|F× = ωπ . We consider the sub-

spaces

V (π ) = {v ∈ π : π (t )v = "(t )v for all t ∈ E×},

and

V (πD) = {v ∈ πD : πD(t )v = "(t )v for all t ∈ E×}

of π and πD, respectively. We know that precisely one of the V (π ) and V (πD) is isomorphic

to C and the other is zero. We denote by π ′ the representation such that V (π ′) *= 0 and we

fix a nonzero unit vector e′T ∈ V (π ′). Let G be the group of which π ′ is a representation.

Suppose now that f ∈ C∞
c (G(F )) and define the distribution

J̃π ( f ) =
∫

G(F )
f (g) 〈π ′(g)e′T , e′T 〉 dg.

We wish to compute J̃π ( f ) for a suitable test function. We do this on a case-by-

case basis according to the table below.

π E/F "

Ramified Arbitrary Unramified

Unramified Unramified Unramified

Unramified Unramified Ramified

Unramified Ramified Unramified

Unramified Ramified Ramified
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2.2.1 π ramified

We denote by Rn(π ) an order of reduced discriminant pn(π )
F containing OE . It is well defined

up to conjugation by E×. We now take f to be the characteristic function of the subgroup

R×n(π ) of G(F ) divided by its volume. We note that in this case we have e′T ∈ (π ′)R×n(π ) , and

hence J̃π ( f ) = 1.

2.2.2 π unramified

We now fix a uniformizer - in F . We fix τ ∈ OE such that OE = OF [τ ]. In the case that

E/F is ramified, we further assume that τ is a uniformizer in E . We take

a + bτ (→
(

a + bTr τ bN τ

−b a

)

for the embedding of E ↪→ GL(2, F ), where Tr and N denote the trace and norm maps.

Denote by n = n(") the smallest integer such that " is trivial on (OF + -nOE )×.

Let

h =
(
-n N τ

1

)

.

Then for α = a + bτ , we have

h−1αh =
(

a + bTr τ b-−n

−b-n N τ a

)

,

and hence h−1αh ∈ M2(OF ) if and only if a ∈ OF and b ∈ -nOF , which is if and only if

α ∈ OF + -nOE . Thus R = hM2(OF )h−1 is a maximal order in M2(OF ) optimally containing

OF + -nOE .

We now assume that π is a unitarizable unramified representation of GL(2, F )

with ωπ ∈ {1, η} as before. We take the Kirillov model for π with respect to an unram-

ified additive character ψ , and we denote by v0 the newvector in π normalized by the

requirement that v0(e) = 1. We take the inner product on π to be given by

〈v1, v2〉 =
∫

F×
v1(x)v2(x) d×x,
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where the Haar measure on F× is normalized to give UF volume 1. By Lemma 2.1 (and a

similar argument when ωπ = η), we have

〈v0, v0〉 = L(1,π , Ad)L(1, 1F )
L(2, 1F )

.

We note that the set of maximal orders in M2(F ) optimally containing OF + -nOE

is permuted simply transitively by E×/F×(OF + -nOE )×. We set v = π (h)v0 and

e′′T =
∑

α∈E×/F×(OF +-nOE )×
"(α)−1π (α)v.

We let f denote the characteristic function of R× divided by its volume. Then e′′T
is a nonzero vector such that π (α)e′′T = "(α)e′′T for all α ∈ E×, and we have

J̃π ( f ) = 1
vol(R×)

∫

R×

〈π (g)e′′T , e′′T 〉
〈e′′T , e′′T 〉

dg.

Clearly, we have

〈e′′T , e′′T 〉 = #(E×/F×(OF + -nOE )×)〈e′′T , v〉,

and

1
vol(R×)

∫

R×
〈π (g)e′′T , e′′T 〉 dg = 〈v, e′′T 〉〈e′′T , v〉

〈v, v〉
.

Hence

J̃π ( f ) = 〈v, e′′T 〉
#E×/F×(OF + -nOE )×〈v0, v0〉

.

We also have

〈v, e′′T 〉 =
∑

α∈E×/F×(OF +-nOE )×
"(α)−1〈π (h−1αh)v0, v0〉

=
∞∑

m=0

v0(-m)
∑

α∈E×/F×(OF +-nOE )×
"(α)−1

∫

UF

(π (h−1αh)v0)(u-m) du.
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Note that

#E×/F×(OF + -nOE )× =






2qn, if E/F is ramified;

1, if E/F is unramified and n = 0;

qn(1 + q−1), if E/F is unramified and n > 0.

We recall that for v ∈ π , we have

(

π

(
a b

0 d

)

v

)

(x) = ψ (bx/d)v(ax/d).

Suppose we now take α = a + bτ ∈ E×. Then we have

h−1αh =
(

a + bTr τ b-−n

−b-n N τ a

)

.

Hence, when |a| ≤ |b-n N τ |,

h−1αh =
(

N(α)/(b-n N(τ )) −(a + bTr(τ ))

0 b-n N(τ )

) (
0 1

−1 a/(b-n N(τ ))

)

,

and when |b-n N τ | ≤ |a|,

h−1αh =
(

a−1 N(α) b-−n

0 a

) (
1 0

−a−1b-n N(τ ) 1

)

.

Thus, when |a| ≤ |b-n N τ |,

(π (h−1αh)v0)(x) = ψ

(
− (a + bTr(τ ))x

b-n N(τ )

)
v0

(
N(α)x

(b-n N(τ ))2

)
,

and when |b-n N τ | ≤ |a|,

(π (h−1αh)v0)(x) = ψ

(
bx

a-n

)
v0

(
N(α)x

a2

)
.
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We define

e(E/F ) =
{

1, if E/F is unramified;

2, if E/F is ramified.

Lemma 2.4. With f as above, we have

J̃π ( f ) = 1
e(E/F )

L(1/2,πE ⊗")L(2, 1F )
L(1,π , Ad)L(1, η)

if " is unramified and

J̃π ( f ) = q−n(")

e(E/F )
L(1, η)2

L(1/2,πE ⊗")L(2, 1F )
L(1,π , Ad)L(1, η)

,

if " is ramified. !

We prove this lemma in the subsequent sections according to the ramification of

E/F and ".

2.2.3 E/F unramified and " unramified

In this case, we clearly have J̃π ( f ) = 1 and

L(1/2,πE ⊗")L(2, 1F )
L(1,π , Ad)L(1, η)

= 1.

2.2.4 E/F unramified and " ramified

Suppose now that E/F is unramified and n > 0. Then we have τ ∈ UE and

E×/F×(OF + -nOE )× = {1 + bτ : b ∈ OF /-nOF }2 {a + τ : a ∈ -OF /-nOF }.

Thus for α = a + bτ ∈ UE with vF (a) ≤ n, we have

(π (h−1αh)v0)(x) = ψ (a−1b-−nx)v0(a−2x).

Suppose now we fix m ≥ 0. We wish to compute

∑

α∈E×/F×(OF +-nOE )×
"(α)−1

∫

UF

(π (h−1αh)v0)(u-m) du.
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We see that this sum is equal to f1(m) + f2(m) + f3(m), where

f1(m) =
∑

b∈OF /pn
F

"(1 + bτ )−1v0(-m)
∫

UF

ψ (ub-m−n) du,

f2(m) =
∑

a∈pF /pn
F ,a *=0

"(a + τ )−1v0(a−2-m)
∫

UF

ψ (ua−1-m−n) du,

and

f3(m) = "(τ )−1v0(-m−2n)
∫

UF

ψ (u-m−2n) du.

For future use we record the following.

Lemma 2.5.

∫

UF

ψ (- ku) du =






0, if k < −1;

− 1
q−1 , if k = −1;

1, if k ≥ 0. !

Lemma 2.6.

∑

b∈OF /pn
F

"(1 + bτ )−1 =
{
−"(τ ), if n = 1;

0, if n > 1.

For 0 < k ≤ n,

∑

b∈pk
F /pn

F

"(1 + bτ )−1 =
{

0, if k < n;

1, if k = n. !

Proof. It suffices to observe that

∑

b∈OF /pn
F

"(1 + bτ )−1 = −
∑

a∈pF /pn
F

"(a + τ ),

that {a + bτ : a ∈ UF , b ∈ pk
F } is a subgroup of UE for k > 0, and that " is trivial

on UF . "
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Applying this lemma gives the following formulae for fi(m).

Lemma 2.7. We have

f1(0) =
{

1
1−q−1 + "(τ ) 1

q−1 , if n = 1;
1

1−q−1 , if n > 1;

and

f1(m) =
{
−v0(-m)"(τ ), if n = 1;

0, if n > 1

when m > 0. Also,

f2(m) =
{

0, if m < 2n;

"(τ )v0(-m−2n), if m ≥ 2n.

If n = 1, then f3(m) = 0 for all m; otherwise, if n > 1 and m > 0, then

f3(m) =






0, if m < 2n− 2;

"(τ ) 1
q−1 , if m = 2n− 2;

−"(τ )v0(-m−2n+2), if m > 2n− 2. !

Thus we see that 〈v, e′′T 〉 is equal to the sum of

1
1− q−1

+ "(
√

d)
1

q − 1
ωπ (-n−1)v0(- 2n−2),

and

"(
√

d)
∞∑

m=2n

(
ωπ (-n)v0(-m−2n)v0(-m)− ωπ (-n−1)v0(-m−2n+1)v0(-m−1)

)
.

Let {β1,β2} denote the Satake parameters of π . We have β2 = ωπ (- )β−1
1 and

v0(-m) = q−
m
2
βm+1

1 − βm+1
2

β1 − β2
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for m ≥ 0. Moreover, since π is unitary, we have

v0(-m) = ωπ (- )−mv0(-m).

Thus

ωπ (-n)v0(-m−2n)v0(-m)− ωπ (-n−1)v0(-m−2n+1)v0(-m−1)

is equal to

−q−(m−n) ωπ (-n)
(β1 − β2)2

(
β1β

−2n+1
2 + β−2n+1

1 β2 − β−2n+2
2 − β−2n+2

1

)
,

which equals

−q−m+2n−1ωπ (-−n+1)v0(- 2n−2).

So we see that

∞∑

m=2n

(
ωπ (-n)v0(-m−2n)v0(-m)− ωπ (-n−1)v0(-m−2n+1)v0(-m−1)

)

= − 1
q − 1

ωπ (-−n+1)v0(- 2n−2).

Hence

〈v, e′′T 〉 =
∑

α

"(α)−1〈π (h−1αh)v0, v0〉 = 1
1− q−1

,

and we may conclude that

J̃π ( f ) = 1
1− q−1

1
qn(1 + q−1)

L(2, 1F )
L(1,π , Ad)L(1, 1F )

= q−nL(1, η)2
L(1/2,πE ⊗")L(2, 1F )

L(1,π , Ad)L(1, η)
.



Central L-Values and Toric Periods for GL(2) 157

2.2.5 E/F ramified

We now assume that E/F is ramified. In this case, a set of representatives for E×/F×(OF +
-nOE )× is

{
1 + bτ : b ∈ OF /pn

F

}
2

{
a- + τ : a ∈ OF /pn

F

}
.

For α = 1 + bτ in the first set with vF (b) ≤ n, we have

(π (h−1αh)v0)(x) = ψ (b-−nx)v0(x),

and for α = a- + τ in the second set with vF (a) ≤ n, we have

(π (h−1αh)v0)(x) = ψ (a−1-−n−1x)v0(-a−2x).

We wish to compute, for m ≥ 0,

∑

α∈E×/F×(OF +-nOE )×
"(α)−1

∫

UF

(π (h−1αh)v0)(u-m) du.

The contribution from the first set of representatives is

f1(m) =
∑

b∈OF /pn
F

"(1 + bτ )−1v0(-m)
∫

UF

ψ (ub-m−n) du,

whereas the contribution from the second set is the sum of

f2(m) =
∑

a∈OF /pn
F ,a *=0

"(a- + τ )−1v0(-m−1a−2)
∫

UF

ψ (ua−1-m−n−1) du

and

f3(m) = "(-n+1 + τ )−1v0(-m−2n−1)
∫

UF

ψ (u-m−2n−1) du.

Lemma 2.8.

∑

a∈OF /pn
F ,vF (a)=k

"(1 + aτ ) =






0, if 0 ≤ k < n− 1;

−1, if k = n− 1;

1, if k = n. !
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The above lemma gives the following.

Lemma 2.9. We have f1(m) = v0(-m) if n = 0 and if n > 0,

f1(m) =
{

1
1−q−1 , if m = 0;

0, if m > 0.

If n = 0, f2(m) ≡ 0; otherwise

f2(m) =






0, if m < 2n− 1;

"(τ )−1 1
q−1 , if m = 2n− 1;

−"(τ )−1v0(-m−2n+1), if m > 2n− 1.

Lastly,

f3(m) =
{

0, m < 2n + 1;

"(τ )−1v0(-m−2n−1), m ≥ 2n + 1. !

First suppose n = 0. Then we have

〈v, e′′T 〉 =
∞∑

m=0

v0(-m)v0(-m) + "(τ )−1
∞∑

m=1

v0(-m−1)v0(-m).

We note that in this case we have "(τ ) = ±1. We denote by {α,α−1} the Satake parameters

of π . Then we have

v0(-m) = q−
m
2
αm+1 − α−(m+1)

α − α−1
,

and hence

v0(-m+1) = αq−
1
2 v0(-m) + q−

m+1
2 α−m−1.

Therefore

〈v, e′′T 〉 =
(
1 + "(τ )αq−

1
2
)
〈v0, v0〉+

"(τ )

αq
1
2 (1− α−1ᾱq−1)(1− α−1ᾱ−1q−1)

.



Central L-Values and Toric Periods for GL(2) 159

We recall from Lemma 2.1 that

〈v0, v0〉 = L(1,π , Ad)L(1, 1F )
L(2, 1F )

= (1− q−2)
(1− α2q−1)(1− α−2q−1)(1− q−1)2

,

which yields

〈v, e′′T 〉 = L(1/2,πE ⊗")
1− q−1

.

When n > 0, we have

〈v, e′′T 〉 = 1
1− q−1

+ "(τ )−1 v0(- 2n−1)
q − 1

+"(τ )−1
∞∑

m=2n

(
v0(-m−2n)v0(-m+1)− v0(-m−2n+1)v0(-m)

)
.

As in the case that E/F is unramified, one has

∞∑

m=2n

(
v0(-m−2n)v0(-m+1)− v0(-m−2n+1)v0(-m)

)
= −v0(- 2n−1)

q − 1
,

and hence

〈v, e′′T 〉 = 1
1− q−1

= L(1/2,πE ⊗")
1− q−1

,

since L(s,πE ⊗") ≡ 1.

Thus, in all cases one has

J̃π ( f ) = L(1/2,πE ⊗")
2qn(1− q−1)

L(2, 1F )
L(1,π , Ad)L(1, 1F )

= 1
2qn

L(1/2,πE ⊗")L(2, 1F )
L(1,π , Ad)

.

This concludes the proof of Lemma 2.4.
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3 Archimedean Calculations

For F = R or C, let µLeb denote the Lebesgue measure. When F = R, let dx = µLeb and

d×x = L(1, 1R) dx
|x|R = dx

|x| . When F = C, let dz = 2µLeb and d×z = L(1, 1C) dz
|z|C = 2

π
µLeb
zz̄ . We fix

additive characters of R and C, given by ψ (x) = e2πi TrF/R x.

3.1 L-factors

Let us first recall the definition of Archimedean L-factors. The real and complex gamma

factors are defined, for s ∈ C, by

G1(s) = π−
s
20

( s
2

)
, G2(s) = 2(2π )−s0 (s) .

If µ is a character of R×, then one can write this character as

µ(x) = |x|rR sgnm(x)

with r ∈ C and m ∈ {0, 1}. In this case, one defines

L(s, µ) = G1(s + r + m).

On the other hand, if µ is a character of C×, then we may write µ in the form

µ(z) = |z|rC
(

z
z̄

)m

with m ∈ 1
2 Z. Here the local L-factor is defined as

L(s, µ) = G2(s + r + |m|).

3.1.1 Principal series representations

Suppose now that π is an admissible representation of GL(2, F ) with F = R or C. If π is

in the principal series, then we can write π = π (µ1, µ2) for a pair of characters µ1 and µ2,
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and the standard and adjoint local L-factors are

L(s,π ) = L(s, µ1)L(s, µ2),

L(s,π , Ad) = L
(
s, µ1µ

−1
2

)
L(s, 1F )L

(
s, µ−1

1 µ2
)
.

3.1.2 Discrete series representations

Suppose now that π lies in the discrete series of GL(2, R) with weight k. Then π is of the

form π = σ (µ1, µ2) with µ1(t ) = |t |s1 and µ2(t ) = |t |s2 sgnm(t ) with s1 − s2 = k − 1, and

m =
{

0, if k is even;

1, if k is odd.

We denote by λ the character of C× given by λ(z) = zs1 z̄s2 , so that π corresponds to the

two-dimensional representation of WR induced from the character λ of WC. Then

L(s,π ) = L(s, λ) = G2(s + s1),

and

L(s,π , Ad) = G1(s + 1)G2(s + k − 1).

3.2 Whittaker functions

Suppose F = R or C and let π be an irreducible generic unitary representation of GL2(F ).

We consider the Whittaker model W(π ,ψ ) of π with respect to the character ψ fixed

above. We let

W(a) := W

(
a

1

)

for W ∈W(π ,ψ ). We let K denote the standard maximal compact subgroup of GL(2, F ),

and we let T denote the diagonal torus in GL(2, F ). We take the inner product on W(π ,ψ )

to be given by

(W1, W2) =
∫

F×
W1(a)W2(a)d×a.
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We let χ : F× → C× be a character of F× which we view as a character of T by

χ :

(
a

b

)

(→ χ (ab−1).

Let W be a K-type of π . Denote by WT ,χ the subspace of W on which T ∩ K acts

by χ−1. Then WT ,χ is at most one-dimensional [18, Proposition 3]. Suppose that W is the

minimal K-type of π such that WT *= 0. Then for .(s) large,

L(s,π ⊗ χ ) =
∫ ∞

0
W(a)χ (a)|a|s−1/2

F d×a

for some W ∈WT ,χ . To see this, observe that we may reduce to the χ = 1 case by consid-

ering the representation π ′(g) = (π ⊗ χ )(g) := π (g)χ (det g). When χ = 1, this is precisely

Proposition 4 of [18]. We denote the element W by Wπ ,χ . When χ is trivial, we write Wπ

for Wπ ,1.

3.3 Split case

Suppose F = R or C and E = F ⊕ F . Let π be an irreducible generic unitary representation

of GL(2, F ) with trivial central character. Regard T = E× as the diagonal torus A in GL2(F )

and let " : T → C× be a character such that "|F× is trivial.

Let W(π ,ψ ) be a Whittaker model for π and let {Wi} be an orthornormal basis. We

consider the distribution

J̃π ( f ) =
∑

Wi

∫

F×
π ( f )Wi(a)"−1(a)d×a

∫

F×
Wi(a)"−1(a)d×a.

Having fixed π and ", we set W = Wπ ,". We can and will choose f ∈ C∞
c (G) such

that π ( f ) is the orthogonal projection onto 〈W〉. Then we have

J̃π ( f ) =
∣∣∫

F× W(a)"−1(a)d×a
∣∣2

(W, W)
.

Note that our choice of measures and the fact that |W(ua)| = |W(a)| for |u| = 1 give

(W, W) =
∫

F×
|W(a)|2d×a = cF

∫ ∞

0
|W(a)|2d×a,



Central L-Values and Toric Periods for GL(2) 163

where cF is 2 if F = R and 4 if F = C. Thus we have

J̃π ( f ) = c2
F

L(1/2,π ⊗")L(1/2,π ⊗"−1)
(W, W)

. (1)

Presently, we will rewrite (W, W) in terms of the adjoint L-value L(1,π , Ad) and obtain

expressions for J̃π ( f ) in terms of L-values. To compute (W, W), we will make use of the

following result (cf. Lemmata 17.3.2 and 18.2.1 of [12]).

Lemma 3.1 (Barnes’s lemma). Let F = R or C and set i = 1 if F = R and i = 2 if F = C.

Let W1 and W2 be Whittaker functions on F such that

∫ ∞

0
W1(a)|a|s−1/2

F d×a = Gi(s + α)Gi(s + β)
∫ ∞

0
W2(a)|a|s−1/2

F d×a = Gi(s + γ )Gi(s + δ),

for .(s) sufficiently large. Then

∫ ∞

0
W1(a)W2(a)|a|s−1

F d×a

= (2π )i−1cF
Gi(s + α + γ )Gi(s + α + δ)Gi(s + β + γ )Gi(s + β + δ)

Gi(2s + α + β + γ + δ)
,

for .(s) sufficiently large. !

3.3.1 Real case

Suppose F = R.

We fix a unitary character " of R×, we write " in the form

"(x) = |x|it sgnn(x),

with t ∈ R and n ∈ {0, 1}.
First suppose π is a principal series representation for GL2(R) with trivial central

character. Then it must be of the form π (| · |r sgnm, | · |−r sgnm) with m ∈ {0, 1}. In this case,

we have

L(s,π ⊗"−1) = G1(s + r − it + εm,n)G1(s− r − it + εm,n),

where εm,n = 1− δm,n.
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With W as above, we see that

∫ ∞

0
W(a)|a|s−1/2d×a = G1(s + r + εm,n)G1(s− r + εm,n).

By Lemma 3.1 and the fact that r is either purely real or imaginary, we have

(W, W) = 4
G1(1 + 2r + 2εm,n)G1(1− 2r + 2εm,n)G1(1 + 2εm,n)2

G1(2 + 4εm,n)
.

We may simplify this by considering the two cases εm,n = 0 and εm,n = 1 sepa-

rately. In the first case, one evidently gets (W, W) = 4πG1(1 + 2r)G1(1− 2r). If εm,n = 1,

the relation G1(z + 2) = z
2π G1(z) yields

(W, W) = π

2
G1(3 + 2r)G1(3− 2r) = 1− 4r2

8π
G1(1 + 2r)G1(1− 2r).

Using L(1,π , Ad) = G1(1 + 2r)G1(1− 2r), we may write both cases together in the

equation

(W, W) = 4π
(

1− 4r2

32π2

)εm,n

L(1,π , Ad).

When " is trivial, we obtain

(Wπ , Wπ ) = 4π
(

1− 4r2

32π2

)m

L(1,π , Ad).

For future comparison, we will also want to write J̃π ( f ) with a factor L(2,1F )
L(1,1F ) , which

equals 1
π

in this case. The inner-product formulas, together with equation (1) yield the

following lemma.

Lemma 3.2. For π in the principal series with parameters as above and with f chosen

as above, we have

J̃π ( f ) =
(

32π2

1− 4r2

)εm,n L(2, 1F )
L(1, 1F )

L(1/2,π ⊗"−1)L(1/2,π ⊗")
L(1,π , Ad)

= 4
(

1− 4r2

32π2

)m−εm,n L(1/2,π ⊗"−1)L(1/2,π ⊗")
(Wπ , Wπ )

.

!
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Now suppose π is a discrete series σ (| · |s1 , | · |−s1 ) with trivial central character. (In

particular, k = 2s1 + 1 is even.) Then L(s,π ) = G1(s + s1)G1(s + s1 + 1). In a similar manner

as above, we see that

(W, W) = 21−2s1 G1(1 + 2s1)G1(2 + 2s1) = 22−kG2(k) = 22−kπL(1,π , Ad).

Alternatively, one may compute the inner product directly in this case as one has an

explicit expression W(t ) = 2|t |s1+1/2e−2π |t |.

Lemma 3.3. For π discrete series of weight k and with f chosen as above, we have

J̃π ( f ) = 2k L(2, 1F )
L(1, 1F )

L(1/2,π ⊗"−1)L(1/2,π ⊗")
L(1,π , Ad)

= 4
L(1/2,π ⊗"−1)L(1/2,π ⊗")

(Wπ , Wπ )
.

!

3.3.2 Complex case

Suppose F = C.

We fix a unitary character " which we write as

"(z) = z
n
2 +it z̄−

n
2 +it = |z|itC

(
z
z̄

) n
2

with n ∈ Z and t ∈ R. Again, since ωπ = ηE/F = 1, we may write π = π (µ, µ−1) where

µ(z) = |z|rC
(

z
z̄

) m
2

with r ∈ C and m ∈ Z. Then L(s,π ⊗"−1) equals

L(s, µ"−1)L(s, µ−1"−1) = G2(s + r − it + |m− n|/2)G2(s− r − it + |m + n|/2).

So

∫ ∞

0
W(a)|a|s−1/2

C d×a = G2(s + r + |m− n|/2)G2(s− r + |m + n|/2).
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Hence by Lemma 3.1, we may write (W, W) as

32π
G2(1 + 2.r + |m− n|)G2(1− 2.r + |m + n|)G2(1 + 2i7r + l)G2(1− 2i7r + *)

G2(2 + 2*)
,

where * = (|m− n| + |m + n|)/2 = max{|m|, |n|}.
Both in the case of complementary series (r ∈ R and m = 0, so * = |n|) and non-

complementary series (r ∈ iR), we obtain

(W, W) = 64π
(1 + 2*)

(
2*

|m− n|

)−1

G2(1 + 2r + *)G2(1− 2r + *).

Since

L(1,π , Ad) = 1
π

G2(1 + 2r + |m|)G2(1− 2r + |m|) = 1 + 2|m|
64π2

(
2|m|
|m|

)
(Wπ , Wπ )

and L(2,1F )
L(1,1F ) = G2(1)

G2(2) = 1
2π , we have the following result.

Lemma 3.4.

J̃π ( f ) = (1 + 2*)
2

(
2*

|m− n|

)
×

*∏

j=|m|+1

4π2

j2 − 4r2
× L(2, 1F )

L(1, 1F )
L(1/2,π ⊗"−1)L(1/2,π ⊗")

L(1,π , Ad)
,

or alternatively,

J̃π ( f ) = 16
1 + 2*

1 + 2|m|

(
2*

|m− n|

)(
2|m|
|m|

)−1

×
*∏

j=|m|+1

4π2

j2 − 4r2
× L(1/2,π ⊗"−1)L(1/2,π ⊗")

(Wπ , Wπ )
.

!

3.4 Nonsplit case

In this case, we have F = R and " a unitary character of C×. We write "(z) = (zz̄−1)n with

n ∈ 1
2 Z. In this case, we study the distribution

J̃π ( f ) =
∫

G(F )
f (g) 〈π (g)e′T , e′T 〉 dg,

where e′T is a unit vector in π such that π (α)e′T = "(α)e′T for all α ∈ C×. We wish to pick

out the vector of weight 2n in π or π ′. In this case, we just take f to be some smooth
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compactly supported function such that f (k1gk2) = "−1(k1)"−1(k2) f (g) and π ( f )e′T = e′T .

Clearly, then J̃π ( f ) = 1.

We note that if ωπ = 1 then we have n ∈ Z, and if ωπ = sgn then we have n ∈ 1
2 Z \ Z.

For later use we record the L-values

L(2, 1F ) = L(1, sgn) = G1(2) = 1
π

.

We recall the definition of the beta function

B(x, y) = 0(x)0(y)
0(x + y)

.

First we assume that π = π (µ, µ−1) is a principal series representation or that π =
π (µ, µ−1 sgn). We write µ(t ) = |t |r sgnm(t ). We define λ = 1/4− r2. Then πE = π (µE , µ−1

E )

with µE (z) = zr z̄r. Hence we have

L(1/2,πE ⊗"−1)
L(1,π , Ad)

= G2(1/2 + r + |n|)G2(1/2− r + |n|)
G1(1 + 2r)G1(1− 2r)

= 2(2π )−2|n|0(1/2 + r + |n|)0(1/2− r + |n|)
0(1/2 + r)0(1/2− r)

.

We note that when ωπ is trivial so that n ∈ Z, then we have

0(1/2 + r + |n|)0(1/2− r + |n|)
0(1/2 + r)0(1/2− r)

=
|n|−1∏

j=0

(1/2 + r + j)(1/2− r + j)

=
|n|−1∏

j=0

(λ + j( j + 1)).

When ωπ is trivial, we have

(Wπ , Wπ ) = 4
G1(1 + 2r + 2m)G1(1− 2r + 2m)G1(1 + 2m)2

G1(2 + 4m)

= 4
0(1/2 + r + m)0(1/2− r + m)0(1/2 + m)2

π1+2m0(1 + 2m)
.
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Hence when m = 0,

(Wπ , Wπ ) = 40(1/2 + r)0(1/2− r),

and when m = 1,

(Wπ , Wπ ) = λ

2π2
0(1/2 + r)0(1/2− r).

Hence we get the following result.

Lemma 3.5. For π in the principal series with trivial central character and with f as

above,

J̃π ( f ) = L(1/2,πE ⊗")L(1, sgn)
L(1,π , Ad)L(2, 1F )

× 2−1(2π )2|n|
∏|n|−1

j=0 (λ + j( j + 1))

and

J̃π ( f ) = L(1/2,πE ⊗")
(Wπ , Wπ )

× 21−mλm(2π )2|n|−2m

∏|n|−1
j=0 (λ + j( j + 1))

.
!

In the case that ωπ = sgn, we have

(Wπ , Wπ ) = 4
G1(2 + 2r)G1(2− 2r)G1(1)G1(3)

G1(4)

= 2
π
0(1 + r)0(1− r).

Hence

L(1/2,πE ⊗")
(Wπ , Wπ )

= (2π )−2|n|0(1/2 + r + |n|)0(1/2− r + |n|)
0(1 + r)0(1− r)

= (2π )−2|n|
|n|− 3

2∏

j=0

(1 + r + j)(1− r + j)

= (2π )−2|n|
|n|− 3

2∏

j=0

((1 + j)2 − r2).
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Lemma 3.6. For π as above with ωπ = sgn and f chosen as above, we have

J̃π ( f ) = L(1/2,πE ⊗")L(1, sgn)
L(1,π , Ad)L(2, 1F )

× 0(1/2 + r)0(1/2− r)
0(1 + r)0(1− r)

(2π )2|n|

2
∏|n|− 3

2
j=0 ((1 + j)2 − r2)

= L(1/2,πE ⊗")
(Wπ , Wπ )

× (2π )2|n|

∏|n|− 3
2

j=0 ((1 + j)2 − r2)
. !

Next we take π to be discrete series of weight k. In this case, π corresponds to

IndWR
WC

(zz̄−1)
k−1

2 . Hence we have πE = π ((zz̄−1)
k−1

2 , (zz̄−1)−
k−1

2 ). Thus we have

L(1/2,πE ⊗"−1) =
{

G2(k/2 + |n|)G2(−k/2 + 1 + |n|), if |n| ≥ k−1
2 ;

G2(k/2 + |n|)G2(k/2− |n|), if |n| ≤ k−1
2 .

On the other hand,

L(1,π , Ad) = G1(2)G2(k) = 1
π

G2(k)

and

(Wπ , Wπ ) = 22−kG2(k).

Hence we get

L(1/2,πE ⊗")
L(1,π , Ad)

= 2πB(k/2 + |n|, k/2− |n|),

if |n| ≤ k−1
2 , and

L(1/2,πE ⊗")
L(1,π , Ad)

= (2π )−(2|n|−k) 2|n|!
k!

B(k/2 + |n|, 1− k/2 + |n|),

if |n| ≥ k−1
2 .

Lemma 3.7. For π in the discrete series of weight k and with f as above,

J̃π ( f ) = L(1/2,πE ⊗")L(1, sgn)
L(1,π , Ad)L(2, 1F )

× 1
2πB(k/2 + |n|, k/2− |n|)

= L(1/2,πE ⊗")
(Wπ , Wπ )

× 2
2k B(k/2 + |n|, k/2− |n|)

,
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if |n| ≤ k−1
2 , and

J̃π ( f ) = L(1/2,πE ⊗")L(1, sgn)
L(1,π , Ad)L(2, 1F )

× (2π )2|n|−kk!
2n!B(k/2 + |n|, 1− k/2 + |n|)

= L(1/2,πE ⊗")
(Wπ , Wπ )

× 22|n|−2k+1π2|n|−k+1k!
n!B(k/2 + |n|, 1− k/2 + |n|)

,

if |n| ≥ k−1
2 . !

4 Global Result

Suppose now that F is a number field and E/F is a quadratic extension. We denote by 5F

(resp. 5E ) the discriminant of F (resp. E ) and by dE/F the absolute norm of the relative

discriminant of E/F . We take π to be a cuspidal automorphic representation of GL(2, AF )

such that ωπ is either trivial or η, the quadratic character of F×\A×F associated to E/F

by class field theory. Let

" : E×\A×E → C×

be a unitary character such that "|A×F = ωπ . We assume that π and " have disjoint rami-

fications.

Let πE denote the base change of π to an automorphic representation of GL(2, AE ).

The L-function of πE ⊗" satisfies a functional equation

L(s,πE ⊗") = ε(s,πE ⊗")L(1− s,πE ⊗").

We assume that ε(1/2,πE ⊗") = +1. In this case, there is a unique quaternion algebra

D/F such that

• E ↪→ D;

• π transfers to π D on D×(AF ); and

• HomA×E
(π D,") *= 0.

Regard G = D× as an algebraic group over F . Let f =
∏

v fv ∈ C∞
c (G(AF )). Define

JπD ( f ) =
∑

ϕ

∫

E×A×F \A×E

(π D( f )ϕ)(t )"(t )−1 dt
∫

E×A×F \A×E

ϕ(t )"(t )−1 dt ,

where the sum is taken over an orthonormal basis of the space of π D.
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We fix an additive character ψ : F \AF → C×. Let S denote a finite set of places

(including the infinite places) of F outside of which everything is unramified. Let f ∈
C∞

c (G(AF )) be a function of the form f =
(∏

v∈S fv
)

f S, where f S is the characteristic

function of KS, a fixed maximal compact subgroup of G(AS
F ). Following [15, Theorem

2], and the appendix to this paper when π is dihedral with respect to E , an explicit

factorization of the distribution JπD ( f ) is given by

JπD ( f ) = 1
2

∏

v∈S

J̃πv
( fv)×

∏

v∈S
inert in E

ε(1, ηv,ψv)2L(0, ηv)× LS(1, ηv)LS(1/2,πE ⊗")
LS(1,π , Ad)

,

where the distributions J̃πv
( fv) are defined as in the previous sections. Here the measures

on G(AF ) and A×F E×\A×E are fixed as in [15, Section 3.1]. On A×E and A×F we take the product

of the local Tamagawa measures, on E× we take the counting measure, and on G(AF ) we

take the product of the local Tamagawa measures multiplied by LS(2, 1F ).

Take ψ = ψ0 ◦ trF/Q where ψ0 denotes the standard character on Q\AQ, so that

ε(1, ηv,ψv) =





1, if v is Archimedean;

q
− n(ηv )+n(ψv )

2
v , if v is non-Archimedean.

Here n(ηv) (resp. n(ψv)) denotes the conductor of ηv (resp. ψv). Similarly for a finite place

v of F , we define n(πv) to be the conductor of πv and we define n("v) to be the smallest

integer such that "v is trivial on (OFv
+ -n("v )

v OEv
)×, where -v denotes a uniformizer in

Fv. We note that

∏

v<∞
qn("v )

v =
√

c("),

where c(") denotes the absolute norm of the conductor of ".

4.1 Test function

We now define a test function

f =
∏

v

fv ∈ C∞
c (G(AF )).

At a finite place v of F , we take R(πv) to be an order of reduced discriminant pn(πv )
Fv

such that

R(πv) ∩ Ev = OFv
+ -n("v )

v OEv
(see [8, Section 3]). We then take fv to be the characteristic

function of R(πv)× divided by its volume.
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At an infinite place v of F , let Kv be a maximal compact subgroup of D×
v such that

Kv ∩ E×v is a maximal compact subgroup of E×v ↪→ D×
v . Now let ϕv be a vector of minimal

weight such that πv(t )ϕv = "v(t )ϕv for t in Kv ∩ E×v . Then ϕv is determined up to a scalar

factor. We choose fv such that πv( fv) is an orthogonal projection onto the space 〈ϕv〉.
Thus, for such f we have

JπD ( f ) =
∣∣∫ ϕ(t )"(t )−1 dt

∣∣2

[ϕ,ϕ]
, (2)

where ϕ ∈ π D is a nonzero vector which is invariant under R(πv)× at each finite place v.

Furthermore, at places v where Ev/Fv is ramified and n(πv) ≥ 2, we make the requirement

that E×v acts on ϕ by "v. At the infinite places of F , we have that Kv ∩ E×v acts on ϕ by "v

and ϕ lies in the minimal such Kv-type.

4.2 Local constants

We consider the Whittaker model for π with respect to the character ψ = ψ0 ◦ trF/Q.

Explicitly for ϕπ ∈ π , one defines

Wϕπ (g) =
∫

F \AF

ϕπ

((
1 x

0 1

)

g

)

ψ (−x) dx.

The Whittaker functions factor and we take for each place v of F the Whittaker function

Wπv
∈W(πv,ψv) defined above. Take ϕπ ∈ π , so that

Wϕπ =
∏

v

Wπv
.

Then we have [15, p. 53]

(ϕπ ,ϕπ ) = 2LS(1,π , Ad)
∏

v∈S

(
Wπv

, Wπv

)
v

L
(
1, 1Fv

) . (3)

4.2.1 Non-Archimedean constants

First suppose that v is non-Archimedean. The calculations in Section 2 give the following.

When v splits in E , we have

L(1, 1Fv
) J̃πv

( fv) =
L
(
1/2,πEv

⊗"v

)
L
(
1, 1Fv

)
(
Wπv

, Wπv

) ×
{

1, if "v is unramified;

q−n("v )
v L(1, ηv)2, if "v is ramified.
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When v is inert and unramified in E , we have

L(1, ηv)q
− n(ψv )

2
v J̃πv

( fv) =
L
(
1/2,πEv

⊗"v

)
L
(
1, 1Fv

)

(Wπv
, Wπv

)

×






1, if πv and "v are unramified;

q−n("v )
v L(1, ηv)2, if "v is ramified;
L
(

1,ηv

)

L
(

1,1Fv

) , if πv is ramified.

When v is ramified in E and πv is unramified, we have

2q
− n(ψv )

2
v J̃πv

( fv) =
L
(
1/2,πEv

⊗"v

)
L
(
1, 1Fv

)
(
Wπv

, Wπv

) ×
{

1, if πv and "v are unramified;

q−n("v )
v L(1, ηv)2, if "v is ramified.

When v is ramified in E and πv is ramified, we have

2q
− n(ψv )

2
v J̃πv

( fv) =
L
(
1, 1Fv

)
(
Wπv

, Wπv

) ×
{

2
(
1 + q−1

v

)−1, if n(πv) = 1;

2
(
1− q−1

v

)
, if n(πv) ≥ 2.

We also define certain subsets of the finite places of F ,

S(") = {places of F above which " ramifies},

S1(π , E ) = {places of F where π ramifies but E does not},

S2(π , E ) = {places of F where both π and E ramify}.

For v ∈ S2(π , E ), we define

C ′(πv) =
{

2
(
1 + q−1

v

)−1, if n(πv) = 1;

2
(
1− q−1

v

)
, if n(πv) ≥ 2.

We also set

Ram(π ) = {finite places v of F such that πv is ramified},

S′(π ) = {v ∈ Ram(π ) such that n(πv) ≥ 2 or n(πv) = 1 and v ramifies in E},

and ev(E/F ) to be the ramification degree of E/F at v.
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4.2.2 Archimedean constants

We write the infinite places of F as

6F
∞ = 6F

R,sp26F
R,in 26F

C ,

with the sets on the right-hand side being the places which are, respectively, real and

split in E , real and inert in E , and complex. For each place v ∈ 6F
∞, write

Cv(E ,π ,") = ev(E/F ) J̃πv
( fv)

L(1,πv, Ad)L(1, ηv)
L(1/2,πE ,v ⊗"v)L(2, 1Fv

)

and

C ′
v(E ,π ,") = ev(E/F ) J̃πv

( fv)

(
Wπv

, Wπv

)

L(1/2,πE ,v ⊗"v)L
(
1, 1Fv

) ,

where ev(E/F ) = 2 if v is inert in E , and ev(E/F ) = 1 otherwise. The expressions below

for Cv(E ,π ,") and C ′
v(E ,π ,") all come immediately from the lemmata in Section 3.

Suppose first v ∈ 6F
R,sp, so Ev = R⊕ R. Write "v in the form

"v(x1, x2) =
(
|x1|it sgnnv (x1), |x2|−it sgnnv (x2)

)

with t ∈ R and nv ∈ {0, 1}. Then

Cv(E ,π ,") =
(

8π2

λv

)εv

, C ′
v(E ,π ,") = 4

(
λv

8π2

)m−εv

if πv = π (µv, µ−1
v ) is a principal series, with Laplacian eigenvalue λv and εv ∈ {0, 1} ac-

cording to µv"v = | · |r sgnεv . If πv is a discrete series of weight kv, then

Cv(E ,π ,") = 2kv , C ′
v(E ,π ,") = 4.

Now suppose v ∈ 6F
C , so Ev = C⊕ C. We may write

"v(z1, z2) =
(

(z1z̄1)it
(

z1

z̄1

)nv

, (z2z̄2)−it
(

z2

z̄2

)−nv

)
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with t ∈ R and nv ∈ 1
2 Z, well defined up to a sign. (The constants below do not depend

upon this sign). Say πv is a principal series of weight mv with Laplacian eigenvalue λv

and let *v = max(mv, |nv|). Then

Cv(E ,π ,") =
(

1
2

+ *v

) (
2*v

|mv − nv|

) *v∏

j=mv+1

4π2

4λv + j2 − 1

and

C ′
v(E ,π ,") = 16π

1 + 2*v

1 + 2mv

(
2*v

|mv − nv|

)(
2mv

mv

)−1 *v∏

j=mv+1

4π2

4λv + j2 − 1
.

Finally, consider v ∈ 6F
R,in. Then Ev = C and we write

"v : z (→
(

z
z̄

)nv

with nv ∈ 1
2 Z, well defined up to a sign. First suppose πv is a principal series with ωπv

trivial. We write πv = π (µv, µ−1
v ) with µv = | · |rv sgnmv such that mv ∈ {0, 1}, and we set

λv = 1
4 − r2

v . Then

Cv(E ,π ,") = (2π )2|nv |
|nv |−1∏

j=0

(λv + j( j + 1))−1,

C ′
v(E ,π ,") = 22−mvλmv (2π )2|nv |−2mv

|nv |−1∏

j=0

(λv + j( j + 1))−1.

If ωπ = sgn, then

Cv(E ,π ,") = 2
0(1/2 + rv)0(1/2− rv)
0(1 + rv)0(1− rv)

(2π )2|nv |

∏|nv |− 1
2

j=1

(
j2 − r2

v

) ,

C ′
v(E ,π ,") = 2(2π )2|nv |

|nv |− 1
2∏

j=1

(
j2 − λv −

1
4

)−1

,
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where λv = 1
4 − r2

v . If πv is a discrete series of weight kv and B(x, y) denotes the beta

function, then

Cv(E ,π ,") = (πB(kv/2 + |nv|, kv/2− |nv|))−1,

C ′
v(E ,π ,") = (2kv−2 B(kv/2 + |nv|, kv/2− |nv|))−1

when |nv| < k−1
2 , and

Cv(E ,π ,") = (2π )2|nv |−kv kv!
nv!B(kv/2 + |nv|, 1− kv/2 + |nv|)

,

C ′
v(E ,π ,") = (2π )2|nv |−kv+1kv!

2kv−1nv!B(kv/2 + |nv|, 1− kv/2 + |nv|)

when |nv| ≥ k−1
2 .

4.3 Final formulas

Let S′(π ) be the complement of the set of finite places of F where either π is unramified,

or else n(πv) = 1 and v is unramified in E . Then the above calculations give the following

results.

Theorem 4.1. The quantity

∣∣∫ ϕ(t )"−1(t ) dt
∣∣2

(ϕ,ϕ)

is equal to

LS′(π )(1/2,πE ⊗")
LS′(π )(1,π , Ad)

×
√
5F

2
√

c(")5E
×LS(")(1, η)2 ×

∏

v∈Ram(π )

ev(E/F )L(1, ηv)×
∏

v∈6F
∞

Cv(E ,π ,").

Here the measure on the group G(AF ) is taken to be the product of the local Tamagawa

measures multiplied by LRam(π )(2, 1F ). !

Theorem 4.2. The quantity

∣∣∫ ϕ(t )"−1(t ) dt
∣∣2

(ϕ,ϕ)
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is equal to

LS2(π ,E )(1/2,πE ⊗")
(ϕπ ,ϕπ )

× 1
√

dE/F c(")
× LS(")(1, η)2 × LS1(π ,E )(1, η)

LS1(π ,E )(1, 1F )

×
∏

v∈S2(π ,E )

C ′(πv)×
∏

v∈6F
∞

C ′
v(E ,π ,").

Here the measures on the groups G(AF ) and GL(2, AF ) are taken to be the product of the

local Tamagawa measures. !

5 Equidistribution

One application of central-value formulas is to prove statements about equidistribu-

tion using subconvexity bounds for L-functions. The relevant subconvexity bounds, in

the case of a general number field, have been established by Venkatesh [23] for GL(2)

L-functions, and announced by Michel and Venkatesh [17] for twisted GL(2) L-functions.

(We refer to the latter paper for an introduction to equidistribution and subconvexity.)

While it is known that equidistribution results follow in principle from Waldspurger’s

formula (see [3] for one instance), the necessary details have not been written down in

most cases.

In any event, an explicit formula such as Theorem 4.1 allows a more immediate

derivation of equidistribution from subconvexity. This has been already carried out in

several situations. For example, see [11] for “sparse” equidistribution of Heegner points

on Shimura curves and [19] for equidistribution of individual geodesics on a modular

curve. These results use, respectively, the explicit central-value formulas in [27] and [19]

when F = Q and E/F is imaginary quadratic and real quadratic.

The generality of Theorem 4.1 allows one to consider equidistribution of toric

orbits in a variety of situations. However, to keep details to a minimum, we will only

deduce equidistribution results in a specific example of a hyperbolic 3-fold. Specifically,

let F = Q(i) and K be the standard maximal compact subgroup of GL2(AF ). The hyperbolic

3-fold we will consider is

X = PSL2(Z[i])\H3 = Z (AF ) GL2(F )\ GL2(AF )/K.

Now fix a square-free d ∈ OF = Z[i] and let E = Ed = F (
√

d). Then we may take

Td to be a standard torus obtained by an optimal embedding of E×d in GL2 /F . The key
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point here is that O×
Ev
% Td (OFv

) embeds into Kv for each finite place of F . For v = ∞, let

zd ∈ GL2(AF ) such that Kd,∞ = zdU (2)z−1
d ∩ Td,∞(AF ) is the maximal compact subgroup of

Td,∞(AF ). Then

Kd = zd Kz−1
d =

∏

v<∞
O×

Ev
× Kd,∞

is the maximal compact subgroup of Td (AF ).

The relative discriminant ideal 5E/F is generated by σdd where σd depends only

upon the congruence class of d mod 4. In particular, |5E | is a bounded multiple of |d|.
We define the geodesics of discriminant d in X to be the components of

Xd = Z (AF )Td (F )\Td (AF )zd/(K ∩ Td (AF )zd )

= (Z (AF )Td (F )\Td (AF )/Kd )zd ⊆ X.

A consequence of the requirement that Td ↪→ GL2 be optimal is then that the number of

such geodesics is the class number hE of E . More precisely, we can write

Xd =
(

E×\A×E/

(
∏

v<∞
O×

Ev
× Kd,∞

))

zd =
⋃

a∈HE

γa,

where HE denotes the ideal class group of E and the individual geodesic γa is the fiber

above a in the quotient on the left-hand side (identifying E×\A×E ,fin/
∏

v<∞O×
Ev

with HE as

usual).

Fix a Haar measure on G = GL2(AF ). This gives a natural choice of measures on

subspaces and quotients.

Theorem 5.1. Let Xd be the collection of geodesics of discriminant d in X. As |d| →∞
along square-free Gaussian integers d, the family Xd becomes equidistributed on X. !

To prove this theorem, by Weyl’s equidistribution criterion it suffices to show

that the Weyl sums

W(ϕ, d) = 1
vol(Xd )

∫

Xd

ϕ

tend to 0 as |d| →∞ for ϕ running through a dense subspace of C∞
c (Z\G/K). Since

cusp forms and wave packets of Eisenstein series span a dense subspace of C∞
c (Z\G/K),



Central L-Values and Toric Periods for GL(2) 179

it suffices to check Weyl’s criterion for ϕ running through a basis of eigenforms in

L2(Z\G/K).

We remark that this theorem follows from the work of Clozel–Ullmo [3] and

Venkatesh [23], though to the best of our knowledge it was not previously stated. Clozel

and Ullmo establish the necessary bounds for W(ϕ, d), assuming subconvexity results

when ϕ is a cusp form. Shortly thereafter, Venkatesh showed the necessary subconvexity

results.

Proof. Suppose ϕ ∈ L2(Z\G)K is a cuspidal eigenform occurring in the representation π

which is normalized, so that (ϕ,ϕ) = 1. Note that π (zd )ϕ is a newform for π , satisfying

the conditions in Section 4.1. By construction,

W(ϕ, d) = 1
vol(Z (AF )Td (F )\Td (AF ))

∫

Z (AF )Td (F )\Td (AF )
π (zd )ϕ(t )dt.

Using Theorem 4.1 with " = 1 gives

|W(ϕ, d)|2 = c(π )
L(1/2,πE )

vol(Z (AF )Td (F )\Td (AF ))2
√

|d|
,

where c(π ) is a constant depending only on π . Since

L(1/2,πE ) = L(1/2,π )L(1/2,π ⊗ χd )

where χd = ηE/F , we have

|W(ϕ, d)|2 : L(1/2,π ⊗ χd )
vol(Z (AF )Td (F )\Td (AF ))2

√
|d|

.

Now note that

vol(Z (AF )Td (F )\Td (AF )) ; ress=1ζE (s) ; Lfin(1,χd ),

where Lfin denotes the finite part of the L-function, and ; means equality up to an

absolutely bounded nonzero constant. Then Siegel’s lower bound gives

vol(Z (AF )Td (F )\Td (AF )) / |d|−ε
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for any ε > 0. Hence the subconvexity result [23]

L(1/2,π ⊗ χd ) ; Lfin(1/2,π ⊗ χd ) : |d|1/2−1/24

yields

|W(ϕ, d)|2 : |d|2ε−1/24 → 0,

as |d| →∞.

For ϕ an Eisenstein form, we refer to [3]; the spirit of the argument is similar. "

Theorem 5.2. Let γd be a geodesic of discriminant d on X. Suppose one has the sub-

convexity result

L(1/2,π ⊗ π ′) : |c(π ′)|1/2−δ,

where π is a fixed automorphic representation of GL2(AF ), π ′ is an automorphic repre-

sentation of GL2(AF ) with (finite) conductor c(π ′), and δ is a positive constant. Let ε0 > 0.

For a sequence of d →∞ along square-free Gaussian integers such that hE : |d|δ/2−ε0 ,

the family γd becomes equidistributed on X. !

Such a subconvexity result as is required by the theorem has been announced

in [17]. (In fact, we only need the subconvexity result for representations π ′ that are

induced from characters along quadratic extensions.) We remark that in general one

needs some condition, such as the one above on the growth of the class number, to

ensure equidistribution of individual geodesics (see [4]).

Proof. As before, it will suffice to show that

1
vol(γd )

∫

γd

ϕ → 0,

as d →∞ for ϕ ranging over an orthonormal basis for L2(Z\G/K). Suppose ϕ ∈
L2

cusp(Z\G)K is an eigenform with (ϕ,ϕ) = 1. Since the ideal class group acts transitively

on the components of Xd , all geodesics of discriminant d have the same volume, that is,

vol(γd ) = 1
hE

vol(Xd ) = vol(Z (AF )Td (F )\Td (AF ))
vol(Kd )hE

; Lfin(1,χd )
vol(Kd )hE

.
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Let ĤE be the group of ideal class characters of E . Via class field theory, we

may view χ ∈ ĤE as a character on the torus Td (F )\Td (AF ) % E×\A×E which in fact factors

through Xd . More precisely, χ may be viewed as a locally constant function on Xd such

that χ (t ) = χ (a) for t ∈ γa. Let c ∈ HE such that γd = γc. Then

1γd (t ) = 1
hE

∑

χ∈ĤE

χ (c−1t )

for t ∈ Xd , where 1γd denotes the characteristic function of γd . Note that

∣∣∣∣

∫

Xd

ϕ(t )χ (c−1t )dt
∣∣∣∣ =

∣∣∣∣

∫

Xd

ϕ(t )χ (t )dt
∣∣∣∣ .

Hence

1
vol(γd )

∣∣∣∣

∫

γd

ϕ(t )dt
∣∣∣∣ ;

vol(Kd )
Lfin(1,χd )

∣∣∣∣∣∣

∑

χ∈ĤE

∫

Xd

ϕ(t )χ (c−1t )dt

∣∣∣∣∣∣

: vol(Kd )
Lfin(1,χd )

∑

χ∈ĤE

∣∣∣∣

∫

Xd

ϕ(t )χ (t )dt
∣∣∣∣ .

Suppose ϕ occurs in the cuspidal representation π . As before, we consider the translate

π (zd )ϕ. Since χ is unramified, it is a newform satisfying the conditions in Section 4.1

with " = χ−1. Then Theorem 4.1 implies something good. Using the fact that χ−1 is finite

order, one gets

∣∣∣∣

∫

Xd

ϕ(t )χ (t )dt
∣∣∣∣
2

; L(1/2,πE ⊗ χ−1)
vol(Kd )2

√
|d|

.

Note that L(s,πE ⊗ χ−1) = L(s,π ⊗ πχ−1 ), where πχ−1 denotes the automorphic induction

of χ−1 to GL2(AF ). Furthermore, the conductor of πχ−1 is just the conductor of χd . Hence

the subconvexity assumption gives

∣∣∣∣

∫

Xd

ϕ(t )χ (t )dt
∣∣∣∣
2

: |d|−δ.
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Putting everything together with Siegel’s lower bound for Lfin(1,χd ), we have

1
vol(γd )

∣∣∣∣

∫

γd

ϕ(t )dt
∣∣∣∣ : hE |d|ε−δ/2

for any ε > 0.

One may bound the integrals for ϕ, an Eisenstein form similarly. "

Appendix

The results of this paper are obtained via a factorization of the distribution Jσ ( f ) into

a product of local distributions. In the case that π is not dihedral with respect to the

quadratic extension E/F (so that the base change of π to E remains cuspidal), such

a factorization was obtained in [15, Theorem 2]. In this appendix, we obtain the same

result for cuspidal representations π which are dihedral with respect to E ; we refer to

[15, Section 8] for further details.

Let E = F (
√
δ) be a quadratic extension of number fields and η the associated

character of F×\A×F . We denote by σ the nontrivial element of Gal(E/F ). Let H ⊂ GL(2, E )

be the unitary similitude group associated to the matrix

w =
(

0 1

1 0

)

,

with similitude character κ. Set KH = H (AF ) ∩ K, where K is the standard maximal com-

pact subgroup of GL(2, AE ).

We fix an additive character ψ : F \AF → C×. On the groups GL(2, AE ) and H (AF ),

we take the product of the local measures defined in [15, Section 2]. To define a measure

on the compact group Kv, where v is a place of E or F , we make use of the Iwasawa

decomposition

GL(2, Ev) = T (Ev)N(Ev)Kv,

where T denotes the diagonal torus in GL(2) and N the upper-triangular unipotent sub-

group. The measures dt on T (Ev) and dn on N(Ev) are defined via the obvious isomor-

phisms T (Ev) ∼= E×v × E×v and N(Ev) ∼= Ev. Having defined a measure dg on GL(2, Ev), the

measure dk on Kv is taken to be such that

dg = dt dn dk.
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Similarly for a place v of F ,

H (Fv) = TH (Fv)NH (Fv)KHv
,

where

TH (Fv) =
{(

a

bā−1

)

: a ∈ E×v , b ∈ F×v

}

and

NH (Fv) =
{(

1 x
√
δ

1

)

: x ∈ Fv

}

.

We use the isomorphism TH (Fv) ∼= E×v × F×v to define a measure on TH (Fv) and take the

Haar measure |δ|
1
2
Fv

dx on NH (Fv). The measure dk on KHv
is chosen as before. With these

choices,

vol(Kv, dk) = d
ψEv

Ev
L(2, 1Ev

)−1,

for a place v of E , and for a place v of F ,

vol
(
KHv

, dk
)

= dψv

Fv
L
(
2, 1Fv

)−1,

where d
ψEv

Ev
and dψv

Fv
are defined as in [16, Section 2.1].

We now fix a unitary character χ : E×\A×E → C× such that χ |A×F ∈ {1F , η}. We as-

sume that χ2 is nontrivial, so that the induction of χ to an automorphic representation

π of GL(2, AF ) is cuspidal. As is well known, ωπ = ηχ |A×F . We let 9 denote the base change

of π to GL(2, AE ). Taking the character

χ̃ :

(
a b

0 d

)

(→ χ (a)χ−1(d)

of B(AE ), we realize 9 on the space of smooth functions f : GL(2, AE ) → C such that

f (bg) = χ̃ (b) f (g)
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for all b ∈ B(AE ). The action of 9 is given by

(9(g) f )(x) = e〈ρ,H (g)〉 f (xg),

where e〈ρ,H (g)〉 = |a1a−1
2 | 1

2 for

g =
(

a1

a2

) (
1 x

1

)

k

with k ∈ K. The inner product on 9 is given by

(ϕ1,ϕ2) =
∫

E×\A1
E

∫

K
ϕ1

((
a

1

)

k

)

ϕ2

((
a

1

)

k

)

d×a dk

= ress=1 L(s, 1E )
∫

K
ϕ1(k)ϕ2(k) dk.

We now fix a unitary character" : E×\A×E → C× such that"|A×F = ωπ , which forces

" *= χ . We assume, as we may, that ε(1/2,χ") = +1 and ε(1/2,χ−1") = +1, since otherwise

L(1/2,9⊗") = 0 and we know that the relevant period integrals vanish.

Let f ∈ C∞
c (GL(2, AE )). We recall, for x, y ∈ GL(2, E )Z (AE )\ GL(2, AE ),

K f ,9(x, y) = 1
2

∫ ∞

−∞

∑

ϕ

E (x,9( f )ϕ; it ,9)E (y,ϕ; it ,9) dt ,

where the sum is taken over an orthonormal basis {ϕ} of 9, and the Eisenstein series are

defined by the analytic continuation of

E (g,ϕ; λ,9) =
∑

γ∈B(E )\ GL(2,E )

ϕ(γg)e〈λ+ρ,H (γg)〉.

For T1, T2 > 0, we consider

;9,T1,T2 ( f ) =
∫

E×\A×E

∫

H (F )Z (AE )\H (AF )
<T1

1,d<
T2
2,mK f ,9

((
a

1

)

, h

)

"−1(a)d×aωπη(κ(h)) dh,

as in [15] and define

;9( f ) = lim
T1→∞

lim
T2→∞

;9,T1,T2 ( f ).
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Following [15, Section 8] and taking care of the normalization of measures,

;9( f ) =
vol

(
F×\A1

F

)

4

∑

ϕ

µ(9( f )ϕ)Pc(ϕ).

Here the sum is over an orthonormal basis {ϕ} of 9,

Pc(ϕ) =
∫

KH

ϕ(k)χ (κ(k)) dk,

and µ(ϕ) is defined to be the value at λ = 0 of the analytic continuation of

µ(ϕ, λ) =
∫

A×E

ϕ(wνa)"−1(a1)e〈λ+ρ,H (wνa)〉 d×a1

with

a =
(

a1 0

0 1

)

, ν =
(

1 1

0 1

)

.

For a place v of F and ϕv ∈ 9v, we define µv(ϕv) and Pc,v(ϕv) analogously, and for

fv ∈ C∞
c (GL(2, Ev)),

;9v
( fv) =

∑

ϕv

µv(9v( fv)ϕv)Pc,v(ϕv),

with the sum taken over an orthonormal basis of 9v with respect to the inner product

(ϕ1,v,ϕ2,v) =
∫

Kv

ϕ1,v(k)ϕ2,v(k) dk.

Clearly, the distribution ;9( f ) factors and if we write f = f S ∏
v∈S fv where S is

a finite set of places of F outside of which everything is unramified and f S denotes the

characteristic function of KS, then

;9( f ) = 1
4L(1, η)

LS(1/2,9⊗")LS(1, η)
LS(1,π , Ad)LS(2, 1F )

∏

v∈S

;9v
( fv).

We shall now compare the distributions ;9v
( fv) with the ones defined in terms

of Whittaker models, as is done for the cuspidal spectrum in [15, Section 4]. Having fixed
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the character ψ , we take the Whittaker model W(9,ψE ) for 9 to be given by the analytic

continuation to λ = 0 of

Wϕ (g, λ) =
∫

AE

ϕ(wn(x)g)e〈λ+ρ,H (wn(x)g)〉ψE (−x) dx,

where

n(x) =
(

1 x

0 1

)

.

We note, for future reference, that by a simple change of variables,

Wϕ

((
a

1

)

, λ

)

= |a|
1
2−λ
AE

χ−1(a)
∫

AE

ϕ
(
wn(x)

)
e〈λ+ρ,H (wn(x))〉ψE (−ax) dx

for all a ∈ A×E .

For a place v of F , the inner product on W(9v,ψEv
) is taken to be

(W1, W2) =
∫

E×v

W1

(
a

1

)

W2

(
a

1

)

d×a.

For a place v of F and Wv ∈W(9v,ψEv
),

λv(Wv) =
∫

E×v

Wv

(
a 0

0 1

)

"−1
v (a) d×a

and

Pv(Wv) =
∫

F×v

Wv

(
b 0

0 1

)

χv(b) d×b.

We define a distribution for f ∈ C∞
c (GL(2, Ev)) by

;W
9v

( f ) =
∑

Wv

λv(9v( f )Wv)Pv(Wv),

with the sum taken over an orthonormal basis of W(9v,ψEv
).
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We now compare ;W
9v

( f ) with ;9v
( f ). The following lemma can be taken from [16,

Proposition 1].

Lemma 1. For a place v of F and all ϕ1,ϕ2 ∈ 9v,

(ϕ1,ϕ2) = 1
L(1, 1Ev

)2
(Wϕ1 , Wϕ2 ). !

Next we compare the distributions µ and λ.

Lemma 2. For a place v of F and ϕ ∈ 9v,

µ(ϕ) = ε
(
1/2, (χ")−1

v ,ψEv

)−1
λ(Wϕ ). !

Proof. We have

Wϕ

((
a

1

)

, λ

)

= |a|
1
2−λ
E χ−1(a)

∫

E
ϕ

(
wn(x)

)
e〈λ+ρ,H (wn(x))〉ψE (−ax) dx,

and hence

λ(Wϕ , λ) =
∫

E×
Wϕ

((
a 0

0 1

)

, λ

)

"−1(a) d×a

=
∫

E×
|a|

1
2−λ
E (χ")−1(a)

∫

E
ϕ

(
wn(x)

)
e〈λ+ρ,H (wn(x))〉ψE (−ax) dx d×a.

By the Tate functional equation, we have

λ(Wϕ , λ) = γ
(
1/2− λ, (χ")−1,ψE

) ∫

E×
|a|

1
2 +λ

E (χ")(a)ϕ

(
0 1

1 a

)

e
〈
λ+ρ,H (wn(a))

〉
d×a

= γ
(
1/2− λ, (χ")−1,ψE

) ∫

E×
"(a)ϕ

(
0 1

a−1 1

)

e
〈
λ+ρ,H

(
0 1

a−1 1

)〉
d×a

= γ
(
1/2− λ, (χ")−1,ψE

) ∫

E×
"(a)−1ϕ

(
0 1

a 1

)

e
〈
λ+ρ,H

(
0 1
a 1

)〉
d×a

= γ
(
1/2− λ, (χ")−1,ψE

)
µ(ϕ, λ).

Finally, since "χ |F× = ηE/F , so γ (1/2, (χ")−1,ψE ) = ε(1/2, (χ")−1,ψE ). "
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Finally, we compare Pc and P.

Lemma 3. For a place v of F and ϕ ∈ 9v,

Pc(ϕ) = 1
L(1, 1Fv

)2
P(Wϕ ). !

Proof. To begin with,

Pc(ϕ) =
∫

KH

ϕ(k)χ (κ(k)) dk

= |δ| 1
2

L(1, 1F )

∫

F
ϕ(wn(

√
δx))e〈ρ,H (wn(

√
δx))〉 dx

by applying [16, (4)] to H (F ) ∼= Z (E ) GL(2, F ). On the other hand, in the sense of analytic

continuation,

P(Wϕ ) =
∫

F×
Wϕ

(
a

1

)

χ (a) d×a

=
∫

F×

∫

E
|a|Fϕ(wn(x))e〈ρ,H (wn(x))〉ψ (−a(x + x̄)) dx d×a

= L(1, 1F )
∫

F

∫

E
ϕ(wn(x))e〈ρ,H (wn(x))〉ψ (−a(x + x̄)) dx da

= |4δ|
1
2
F L(1, 1F )

∫

F

∫

F

∫

F
ϕ(wn(x1 + x2

√
δ))e〈ρ,H (wn(x1+x2

√
δ))〉ψ (−2ax1) dx1 dx2 da

= |δ|
1
2
F L(1, 1F )

∫

F

∫

F

∫

F
ϕ(wn(x1 + x2

√
δ))e〈ρ,H (wn(x1+x2

√
δ))〉ψ (−ax1) dx1 dx2 da

= |δ|
1
2
F L(1, 1F )

∫

F
ϕ(wn(x2

√
δ))e〈ρ,H (wn(x2

√
δ))〉 dx2

by the Fourier inversion formula. "

Combining the above lemmata we have, for any place v of F and fv ∈ C∞
c (GL(2, Ev)),

;9v
( fv) = ε

(
1/2, (χ")−1

v ,ψEv

)−1L(1, ηv)2;W
9v

( fv).
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This gives the following corollary.

Corollary 1. For f = f S ∏
v∈S fv ∈ C∞

c (GL(2, AE )) as above,

;9( f ) = 1
4

∏

v∈S

;W
9v

( fv)
LS(1, η)LS(1/2,9⊗")

LS(1,π , Ad)
.

!

The upshot of the relative trace formula comparison is an identity of the form

;9( f ) + ;9′ ( f ) = θσε ( fε)

as in [15, p. 41], where ;9′ denotes the contribution to the trace formula from the char-

acter χ̃−1. There is only one term on the right-hand side in this case, since π ⊗ η = π .

Thus for f = f S ∏
v∈S fv ∈ C∞

c (GL(2, AE )),

1
2

∏

v∈S

;W
9v

( fv)
LS(1, η)LS(1/2,9⊗")

LS(1,π , Ad)
= θσε ( fε).

We can now apply the purely local arguments of [15, Section 5] and deduce the statement

of [15, Theorem 2] for π dihedral with respect to E .
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