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Abstract. We use mass formulas to construct minimal parabolic Eisenstein
congruences for algebraic modular forms on reductive groups compact at in-
finity. For unitary groups of prime degree, this construction yields Eisenstein
congruences for non-endoscopic cuspidal automorphic forms on quasi-split uni-
tary groups.

In supplementary sections, we also generalize previous weight 2 Eisenstein
congruences for Hilbert modular forms, and prove some special congruence mod
p results between cusp forms on U(p).

1. Introduction

In [Mar17], we gave a construction for mod p congruences of weight 2 cusp forms
with Eisenstein series on PGL(2) using the Eichler mass formula for a definite
quaternion algebra and the Jacquet–Langlands correspondence. This approach
has certain advantages over previous approaches to Eisenstein congruences for
elliptic modular forms (e.g., [Maz77], [Yoo19]): one can treat more general levels
and primes p, as well as Hilbert modular forms, without much difficulty.

In this paper, we extend this approach to groups of higher rank. For GL(2),
there is no difference between congruences of Hecke eigenvalues and congruences
of Fourier coefficients. In higher rank, the relation between Fourier coefficients and
Hecke eigenvalues is more mysterious, so these two types of congruences are not
known to be equivalent.

We will only address congruences of Hecke eigenvalues for Eisenstein series
attached to a minimal parabolic subgroup. As Hecke eigenvalues determine L-
functions, it seems plausible that these congruences are related to L-value congru-
ences with products of GL(1) L-functions. Relatedly, Bergström and Dummigan
[BD16] relate Hecke eigenvalue congruences for Eisenstein series attached to max-
imal parabolic subgroups with the Bloch–Kato conjecture.

Suppose π, π′ are irreducible automorphic representations of a reductive group
G over a number field F , and that outside of a finite set of places S there is a
hyperspecial maximal compact subgroup Kv ⊂ G(Fv) such that πv and π′v are
both Kv-spherical. Then we say π and π′ are Hecke congruent mod p (away from
S) if there exists a prime p above p in a sufficiently large number field such that, for
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v 6∈ S, the spherical Hecke eigenvalues for πKvv and those for (π′v)
Kv are congruent

mod p.

1.1. Main results. Our first main result is a general congruence result for alge-
braic modular forms.

Let F be a totally real number field and G/F be a reductive group which is
compact at infinity. Gross [Gro99] defined a notion of algebraic modular forms on
G. Let K =

∏
Kv be a suitably nice compact open subgroup of G(A). In particu-

lar, we assume Kv is a hyperspecial maximal compact subgroup almost everywhere
and Kv = Gv for v | ∞. Let A(G,K) denote the space of algebraic modular forms
with level K and trivial weight. We may view A(G,K) as the space of C-valued
functions on the finite set Cl(K) = G(F )\G(A)/K. Let x1, . . . , xh ∈ G(A) be a
set of representatives for Cl(K) and put wi = |G(F ) ∩ xiKx−1

i |. On A(G,K), we

consider the inner product (φ, φ′) =
∑

1
wi
φ(xi)φ′(xi). This space has a basis of

orthogonal eigenforms for the unramified Hecke algebra. The constant function 1

is an eigenform, which we think of as a compact analogue of an Eisenstein series
associated to the minimal parabolic of the quasi-split form. Let A0(G,K) be the
orthogonal complement on 1 in A(G,K). The mass of K is defined to be

m(K) = (1,1) =
1

w1

+ · · ·+ 1

wh
.

We say two eigenforms are Hecke congruent mod p if their automorphic represen-
tations are.

Theorem A. (Theorem 2.1) If p | m(K), then there exists an eigenform φ ∈
A0(G,K) which is Hecke congruent to 1 mod p.

Explicit mass formulas have been computed in a wide variety of settings— e.g.,
see [Shi06] and [GHY01]. We will explicate a mass formula for unitary groups
below, but the point is this gives a simple numerical criterion for the existence of
certain congruences.

Often one focuses on automorphic forms on quasi-split groups. Suppose G is as
above, and G′ is a quasi-split inner form of G. Then by Langlands’ conjectures,
automorphic representations of G should transfer to G′, and thus Theorem A
should imply a Hecke congruence on G′.

Such a congruence on G′ can be regarded as an Eisenstein congruence as follows.
Suppose G′/F is semisimple with a Borel subgroup B. For a character χ of the Levi
of B, consider the principal series representation I(χ) induced from χ. Choosing
standard sections of I(χ) yields Eisenstein series, which are not in general L2.

In particular, if χ = δ
′−1/2
G where δG′ denotes the modulus character, then I(χ)

contains the trivial representation 1G′ as a subrepresentation, and 1G′ contributes
to the residual part of the discrete L2 spectrum. Note that one can reformulate
the weight 2 Eisenstein series congruence for elliptic modular forms from [Maz77],
[Mar17] as congruences with 1G′ for G′ = PGL(2).
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One would like to know when such congruence are “new” in the following sense.
If one has an endoscopic lifting from PGL(2) to G′, then an Eisenstein congruence
on G′ may just arise as a lift of an Eisenstein congruence on PGL(2). Indeed, in
some but not all examples we computed with G = SO(5) and G = U(3), Eisenstein
congruences coming from Theorem A numerically appear to be Saito–Kurokawa
lifts or Kudla lifts of Eisenstein congruences on PGL(2).

In Theorem 3.8, we show that this construction yields non-endoscopic Eisenstein
congruences on quasi-split unitary groups of prime degree over totally real fields.
The point of using unitary groups (rather than, e.g., orthogonal groups) is because
they possess inner forms which are compact mod center at a finite place. The
restriction to prime degree is because there is a simple cuspidality criterion in this
case, but potentially this could be removed with a concrete understanding of the
non-cuspidal spectrum on inner forms.

For concreteness, and to minimize notation in the introduction, here we merely
state this congruence result when the unitary group is attached to the quadratic
extension E/F = Q(i)/Q and the automorphic representation is spherical outside
of a single prime `.

Theorem B*. (Example 3.11) Let n = 2m + 1 be an odd prime, χ the idele
class character for Q associated to the quadratic extension E = Q(i), and G′ =
U(n) the quasi-split unitary group associated to E/Q. Let 1G′ denote the trivial
representation of G. Fix a prime ` ≡ 1 mod 4. Suppose p > n is a prime such that
either p | (`r − 1) for some 1 ≤ r ≤ n − 1 or that p divides the numerator of the
product

∏m
r=1B2r ·

∏m
r=1B2r+1,χ of generalized Bernoulli numbers.

Then there exists a holomorphic weight n cuspidal representation π of G′(A)
such that (i) πv is unramified at each finite odd v 6= `, (ii) π2 is spherical, (iii) π`
is an unramified twist of the Steinberg representation, (iv) the base change πE of
π to GL(n,AE) is cuspidal, and (v) π is Hecke congruent to 1G′ mod p.

The asterisk in the theorem refers to an underlying assumption of the endoscopic
classification for unitary groups when n > 3, to be discussed below. This is long
known for n = 3.

Condition (iv) implies that π is not an endoscopic lift from lower rank groups.
Conditions (i)—(iii) tell us that π has “level `” with respect to Iwahori subgroups.
The difference between conditions (i) and (ii) is due to the fact that our unitary
group is ramified at 2. Moreover the condition that ` ≡ 1 mod 4, i.e., ` is split in
E/Q, is needed to use an inner form G of G′ which is locally compact mod center
at `.

The divisibility hypotheses on p imply that p divides the mass of a suitable
compact open subgroup. The p > n condition is not needed in general, but here it
ensures p does not divide the denominator of any Bernoulli numbers appearing in
the mass. As a specific example of the Bernoulli number divisibility condition, for
any ` ≡ 1 mod 4, we may take p = 61 if n = 7 or p ∈ {19, 61, 277, 691} if n = 13.
For unitary groups U(n) attached to more general CM extensions E/F (still with
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n prime), there are additional divisibility conditions in terms of E to guarantee
one gets a non-endoscopic congruence.

The Hecke eigenvalues for 1G are relatively simple to describe, being simply the
degrees of the corresponding Hecke operators. For instance, if G = U(2) or U(3),
the local spherical Hecke algebra is generated by a single Hecke operator Tq. For
G = U(2), the spherical eigenvalue of 1G for Tq is q + 1 if q is split in E/Q and
q2 + q if q is inert in E/Q. For G = U(3), the spherical eigenvalue of 1G for Tq is
q2 + q + 1 if q is split in E/Q and q4 + q if q is inert in E/Q. In general, there are
many local Hecke operators at q.

To our knowledge, these are the first general non-endoscopic Eisenstein con-
gruence results in higher rank for Eisenstein series attached to minimal parabolic
subgroups.

We also use the ideas in the proofs to obtain two other congruence results. In
Section 4, we refine our earlier results on weight 2 Eisenstein congruences for GL(2)
from [Mar17]. In Section 5, we show that if π is a cuspidal representation of U(p)
with trivial central character such that πv is an unramified twist of Steinberg at
some finite v, there exists a cuspidal π′ on U(p) with the same level structure as π
which is Hecke congruent to π mod p and π′v is Steinberg at v. This is not about
Eisenstein congruences, but is a higher rank analogue of a mod 2 congruence result
on GL(2) from [Mar17].

1.2. Method of proof. The proof of Theorem A is a straightforward generaliza-
tion of the proof of Eisenstein congruences on definite quaternion algebras from
[Mar17]. This essentially boils down to some linear algebra over rings.

Theorem A then yields Eisenstein congruences on definite unitary groups. To
derive Theorem B*, we work with an inner form G of U(n) which is compact
at infinity and compact mod center at `, i.e., G is unitary group over a division
algebra. By comparing the endoscopic classification of discrete L2 automorphic
representations of G with those of the quasi-split form U(n), one gets a transfer
of automorphic representations of G to those of U(n). Since G is compact mod
center at ` and n is prime, if π is a non-abelian (not 1-dimensional) automorphic
representation of G, the transfer to G′ must be non-endoscopic and have cuspidal
base change to GL(n,AE). When E = Q(i), there are no abelian automorphic rep-
resentations occurring in A0(G,K), which gives Theorem B*. For definite unitary
groups associated to a general CM extensions E/F , one gets an Eisenstein congru-

ence with a non-abelian φ provided that p divides the numerator of m(K)
n|Cl(UE/F (1)| .

See Theorem 3.8 for a precise statement.
The endoscopic classification results that we use were obtained (conditional on

stabilization of trace formulas) in [Mok15] for U(n) and were announced in [KMSW]
for inner forms. However, the proof for the case of inner forms, while known in
many situations, is still work in progress, and we assume this classification in
Theorem B*. For n = 3, the endoscopic classification was completed for all inner
forms in [Rog90], and thus our results are unconditional at least for n = 3.

4



Notation. Throughout, F will denote a number field, o = oF its ring of integers,
A = AF its adele ring, and v a place of F . We also denote the finite adeles by Af

and put ô =
∏

v<∞ ov. At a finite place v, we denote by pv the prime ideal and qv
the size of the residue field.

For a group G, we denote its center by Z(G), or just by Z if G is understood.
For an algebraic group G over F , we often write Gv for G(Fv). By an automor-
phic representation, by default we mean an irreducible L2-discrete automorphic
representation.

Finally p will typically denote our congruence prime. To denote other primes,
we generally use v to denote other primes, or ` or q when F = Q. If α ∈ Q, by
p | α, we mean that p divides the numerator of α.

Acknowledgements. We thank Wei Zhang for suggesting the use of unitary
groups over division algebras, and Sug Woo Shin for answering a question about
their endoscopic classification. We are grateful to Markus Kirschmer for providing
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lattice calculations. We also thank Hiraku Atobe, Tobias Berger, Keiichi Gunji,
Ralf Schmidt, Takashi Sugano and Shunsuke Yamana for helpful discussions. This
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Fellowship (Short-term, S18025). K.M. was partially supported by grants from the
Simons Foundation (240605 and 512927, KM). S.W. was partially supported by
JSPS Grant-in-Aid for Scientific Research (No. 18K03235).

2. Congruences from mass formulas

Let F be a totally real number field. Let G be a connected reductive linear
algebraic group over F such that G∞ is compact. Let K =

∏
Kv be an open

compact subgroup of G(A) such that Kv = Gv for v | ∞. For later use of the theory
of Hecke operators, we will also assume Kv is a hyperspecial maximal compact
subgroup for all v outside of a finite set of places S, which contains all infinite
places.

Fix a nonzero Haar measure dg on G(A) which is a product of local Haar mea-
sures dgv. The mass of K is defined to be

(2.1) m(K) =
vol(G(F )\G(A), dg)

vol(K, dg)
.

(As usual, we give the discrete subgroup G(F ) the counting measure and the
volume of the quotient G(F )\G(A) really means with respect to the quotient mea-
sure.) This is nonzero, finite, and independent of the choice of dg. Note that if
K ′ ⊂ K is also a compact open subgroup, then m(K ′) = [K : K ′]m(K).

Consider the classes Cl(K) = G(F )\G(A)/K. We identify Cl(K) with a set of
representatives {x1, . . . , xh}, where xi ∈ G(A). Note vol(G(F )\G(F )xiK, dg) =
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1
wi

vol(K, dg) where wi = |G(F ) ∩ xiKx−1
i |. Thus we can also express the mass as

(2.2) m(K) =
1

w1

+ · · ·+ 1

wh
.

Consequently, m(K) ∈ Q.
If G is a unitary, symplectic or orthogonal group, and K is the stabilizer of a

lattice Λ, then this mass corresponds to the classical mass of Λ. Mass formulas
have been calculated in a considerable amount of generality in many works, e.g.
see [GHY01] or [Shi06]. We will explicate these in some cases below.

2.1. Algebraic modular forms. The basic theory of algebraic modular forms
was developed in [Gro99]. Below, we will review aspects necessary for our appli-
cations.

We define the space of algebraic modular forms on G(A) with level K and trivial
weight to be

(2.3) A(G,K) = {φ : Cl(K)→ C}.
As A(G,K) ⊂ L2(G(F )\G(A)), we can decompose this space as

(2.4) A(G,K) =
⊕

πK ,

where π runs over irreducible automorphic representations of G(A) with trivial
infinity type. If πK 6= 0, we will say π occurs in A(G,K). Since G(F )\G(A) is
compact, L2(G(F )\G(A)) decomposes discretely and each π above is finite dimen-
sional. The usual inner product on L2(G(F )\G(A)) restricts to an inner product
on A(G,K), which after suitable normalization we can take to be

(φ, φ′) =
∑ 1

wi
φ(xi)φ′(xi).

Let Z denote the center of G and KZ = K ∩ Z(A). Note that Cl(KZ) =
Z(F )\Z(A)/KZ acts on elements of A(G,K) by (left or right) multiplication. Let
ω : Cl(KZ) → C be a “class character”.1 Define the space of algebraic modular
forms with central character ω, level K and trivial weight to be

A(G,K;ω) = {φ ∈ A(G,K) : φ(zg) = ω(z)φ(g) for z ∈ Z(A), g ∈ G(A)}.
By decomposing A(G,K) with respect to the action of Cl(KZ), we obtain a de-
composition

A(G,K) =
⊕
ω

A(G,K;ω),

where ω runs over characters of Cl(KZ). We also have decompositions of the form
(2.4) for each A(G,K;ω), where now one runs over π with central character ω.

If χ : G(A) → C is a 1-dimensional representation and kerχ ⊃ G(F )K, then
we may view χ as an element of A(G,K). In particular, the space for trivial

1If we relax our compact at infinity condition to compact mod center at infinity, and suppose
Z = GL(1) and KZ = ô×F × F×∞, this is just an ideal class character of F .
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representation is the span of the constant function 1 ∈ A(G,K). Define the
codimension 1 subspace

A0(G,K) = {φ ∈ A(G,K) : (φ,1) = 0},

and putA0(G,K;ω) = A(G,K, ω)∩A0(G,K). We say φ ∈ A(G,K) is non-abelian
if it is not a linear combination of 1-dimensional representations of G(A).

In the special case G = B×, where B is a definite quaternion algebra over F = Q
and K is the multiplicative group of an Eichler order of level N , then 1 ∈ A(G,K)
corresponds to a weight 2 Eisenstein series on GL(2) and the Jacquet–Langlands
correspondence gives a Hecke isomorphism of A0(G,K) with the subspace of S2(N)
which are p-new for p ramified in B. However, in general A0(G,K) may contain
many abelian forms, as well as many non-abelian forms φ (even in πK for some π
occurring in A0(G,K)) which do not correspond to cusp forms via a generalized
Jacquet–Langlands correspondence. For higher rank G, it is a difficult problem to
describe the set of φ which correspond to cusp forms on the quasi-split form of G.

Finally, for a subring O of C, and a space of algebraic modular forms (e.g.,
A(G,K)) we denote with a superscript O (e.g., AO(G,K)) the subring of O-valued
algebraic modular forms.

2.2. Hecke operators. For g ∈ G(A) and φ ∈ A(G,K), we define the Hecke
operator

(2.5) (Tgφ)(x) =
∑

φ(xgi), KgK =
∐

giK.

By right K-invariance of φ, this is independent of the choice of representatives gi
in the coset decomposition KgK =

∐
giK, and Tg′ = Tg if g′ ∈ KgK. Clearly

each πK is stable under Tg for each π occurring in A(G,K). In particular, Tg acts
on the subspaces A0(G,K) and A0(G,K, ω).

We also note that each Tg is integral in the sense that, viewing each φ as a column
vector (φ(xi)) ∈ Ch, the action is given by left multiplication by an integral matrix
in Mh(Z). Consequently, for any subring O ⊂ C, Tg restricts to an operator on
AO(G,K) (and similarly, AO0 (G,K), etc.). Moreover, all eigenvalues for Tg are
algebraic integers.

Consider a representation π =
⊗′ πv occurring in A(G,K). Take v 6∈ S. Then

πv is Kv-spherical, and dim πKvv = 1. Viewing gv ∈ G(Fv) as an element of G(A)
which is gv at v and 1 at all other places, we can consider the (global) Hecke
operator Tgv . Then Tgv acts by a scalar on πKvv , and hence is diagonalizable on
A(G,K).

In fact, the Tgv ’s are simultaneously diagonalizable for all v 6∈ S and all gv ∈
G(Fv). Specifically, let us call any nonzero φ ∈ A(G,K) such that φ ∈ πK for some
π an eigenform. Such a φ is a simultaneous eigenform for all Tgv ’s with v 6∈ S.
We denote the corresponding eigenvalue by λgv(φ). Then any basis of A(G,K) of
eigenforms simultaneously diagonalizes the Tgv ’s (v 6∈ S).

7



Note that 1 is always an eigenform, and λgv(1) is the degree of Tgv , i.e., the
number of gi’s occurring in the decomposition KgvK =

∐
giK, which equals

vol(KvgvKv)/ vol(Kv).

2.3. Congruences. Let φ, φ′ ∈ A(G,K) be eigenforms. We say φ and φ′ are
Hecke congruent mod p (away from S) if, for all v 6∈ S and all gv ∈ G(Fv),
λgv(φ) ≡ λgv(φ

′) mod p, where p | p is a prime of some finite extension of Q.
For a subring O ⊂ C, ideal n in O and φ1, φ2 ∈ AO(G,K), we write φ1 ≡

φ2 mod n if φ1(xi) ≡ φ2(xi) mod p for all xi ∈ Cl(K). Note if φ1 and φ2 are
eigenforms which are nonzero mod p, then φ1 ≡ φ2 mod p implies φ1 and φ2 are
Hecke congruent mod p.

Theorem 2.1. Suppose p | m(K). Then there exists an eigenform φ ∈ A0(G,K)
which is Hecke congruent to 1 mod p.

Proof. One can use the same arguments as those given for GL(2) in [Mar17] and
[Mar18b]. In fact we give a slightly more refined argument than what we need for
this proposition in order to use it later in Section 3.3.

Let r = vp(m(K)) ≥ 1. The first step is to note that there exists a Z-valued
φ′ ∈ AZ

0 (G,K) such that φ′ ≡ 1 mod pr, i.e., φ′(xi) ≡ 1 mod pr for i = 1, . . . , h.
To see this, consider φ′ ∈ AZ(G,K) such that each φ′(xi) = 1 + prai for some
ai ∈ Z. We claim we can choose the ai’s so that (φ′,1) = 0, i.e., pr

∑
ai
wi

=

−
∑

1
wi

= −m(K). Let w =
∏
wi and w∗i = w

wi
. Then we want ai ∈ Z such

that
∑
aiw

∗
i = −wm(K)

pr
. Note that pj | w∗i for some i implies pj | w and thus

pj+r | wm(K). Thus gcd(w∗1, . . . , w
∗
h) | w

m(K)
pr

, and we may choose the ai’s as

claimed.
Take such a φ′, which is a mod p eigenform—i.e., for each v 6∈ S and gv ∈ G(Fv)

there exists a λ such that Tgvφ
′ ≡ λφ′ mod p. Now we want to pass from φ′ to

an eigenform φ which is Hecke congruent to φ′ mod p. For this, one can either
use the Deligne–Serre lifting lemma as in the proof of [Mar18b, Theorem 5.1] or
the reduction argument as in proof of [Mar17, Theorem 2.1]. Specifically, the
subsequent Lemma 2.2 is a slight refinement of the latter, and applying it with
O = Z, φ1 = 1, φ2 = φ′ and W = A0(G,K) gives the desired φ. �

Lemma 2.2. Let O be the ring of integers of a number field L, and p a prime
of O above a rational prime p. Let φ1 ∈ AO(G,K) be an eigenform. Let W be a
Hecke-stable subspace of A(G,K). Suppose there exists φ2 ∈ AO(G,K) such that
φ2 ≡ φ1 mod p and φ2 has nonzero orthogonal projection to W . Then there exists
an eigenform φ ∈ W such that φ is Hecke congruent to φ1 mod p for all Hecke
operators Tg.

Proof. Enlarge L if necessary to assume that AO(G,K) contains a basis of eigen-
forms ψ1, . . . , ψh. Let Φ denote the collection of φ ∈ AO(G,K) such that φ is
congruent to a nonzero multiple of φ1 mod p and φ has nonzero orthogonal pro-
jection to W . The hypothesis on φ2 means Φ 6= ∅. Let m be minimal such that,
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after a possible reordering of ψ1, . . . , ψh, there exists φ = c1ψ1 + · · · + cmψm ∈ Φ
with each ci ∈ L× and ψ1 ∈ W . Take such a φ.

Fix any Hecke operator Tg, and put φ′ = [Tg − λg(ψ1)]φ. Then note that

φ′ ≡ (λg(φ1)− λg(ψ1))φ mod p.

Hence φ′ ∈ Φ unless λg(ψ1) ≡ λg(φ1) mod p. But φ′ is of the form c′2ψ2+· · ·+c′mψm
for some c′i ∈ L×. Thus φ′ 6∈ Φ by minimality of m. Consequently, λg(ψ1) ≡
λg(φ1) mod p for all g, and we may take ψ1 for our desired φ. �

Remark 2.3. Let p be the prime above p in a sufficiently large extension of Qp,
with ramification index e. The work [BKK14] considers the notion of depth of
congruences, which is 1

e
times the number of Hecke eigensystems satisfying a con-

gruence mod p counted with multiplicity (a congruence mod pr means multiplicity
r). Combining this theorem with Proposition 4.3 of op. cit. gives a lower bound
on the depth of congruences of vp(m(K)).

We can also guarantee the existence of such a φ with trivial central character.

Corollary 2.4. Set Ḡ = G/Z. Suppose that Ḡ(k) = G(k)/Z(k) holds for any

field k of characteristic zero, and p | m(K)
m(KZ)

. Then there exists an eigenform φ ∈
A0(G,K; 1) which is Hecke congruent to 1 mod p.

Proof. Let K̄ = Z(A)K/Z(A). ThenA0(G,K; 1) may be identified withA0(Ḡ, K̄).

Now note that m(K̄) = m(K)
m(KZ)

, and apply the proposition to A(Ḡ, K̄). �

The assumption for Ḡ in Corollary 2.4 is satisfied when G is a unitary group of
odd degree.

3. Eisenstein congruences for unitary groups

Let E/F be a CM extension of number fields, and G′ = U(n) be the associated
quasi-split unitary group over F in n variables. Explicitly, if Φ is an n× n matrix
with alternating ±1’s on the anti-diagonal and zeros elsewhere, then we may repre-
sent G′ = {g ∈ GL(n,E) : tḡΦg = Φ}. Here bar denotes the Galois automorphism
of E/F (in this case applied coordinate-wise to g.

Let G be an inner form of G′. We can realize G as follows. There exist (i) a
central simple algebra A/E of degree n, i.e., dimE A = n2, and (ii) an involution
α 7→ α∗ of A of the second kind with α∗ = ᾱ for α ∈ E, such that

G = {g ∈ A× : g∗g = 1}.
We remark that G is the automorphism group of the Hermitian form 〈α, β〉 = α∗β
on A. The center of G is E× ∩G (viewing E× as the algebraic group ResE/FGm),
which we may identify with U(1) = E1 = {a ∈ E× : aā = 1}.

To specify A and/or ∗ below, we will also denote G = UA(n) = UA,∗(n). (The
isomorphism class depends on both A and ∗, but as we will typically only be
concerned about specifying A we often just write UA(n).) Landherr’s theorem
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on the classification of involutions of the second kind tells us that if v is inert or
ramified in E/F , then Av is split. Moreover, if v splits in E/F as v = ww′, then
∗ interchanges the factors of Aw and Aw′ , giving an isomorphism Aw ' Aopp

w′ and
Gv = UA(n, Fv) ' A×w ' A×w′ .

We will now assume G = UA,∗(n) is a definite unitary group, i.e., the associated
Hermitian form is totally definite. This means Gv is compact for all v | ∞. Note
that one can make a definite involution on A from any involution by conjugation
(see [Sch85, Remark 10.6.11]).

Let det denote the reduced norm on A. By restriction to G = UA(n), we may
view det as a homomorphism of algebraic groups det : G → U(1). The derived
subgroup SUA(n) of G is the kernel of det, so any 1-dimensional automorphic
representation of G(A) factors through det.

Lemma 3.1. The map det : G(k)→ U(1, k) is a surjective map of rational points
for any localization k = Fv as well as for k = F .

Proof. By the Hasse principle for the norm map of unitary groups ([PR94, Theorem
6.28]), the result for F follows from the result for each Fv. If v is split in Ev/Fv, the
local result follows from surjectivity of reduced norm for central simple algebras
over p-adic fields. Otherwise, G(Fv) is an honest unitary group, and it is clear det
restricted to the diagonal torus surjects onto U(1, k). �

3.1. Endoscopic classification. Here we briefly explain certain aspects of the en-
doscopic classification for unitary groups as asserted in [KMSW, Theorem* 1.7.1],
and refer the reader to op. cit. and [Mok15] for more precise details.

The endoscopic classification was treated by Rogawski [Rog90] for U(3) and
its inner forms (as well as quasi-split U(2)), by Mok [Mok15] for quasi-split U(n),
and by Kaletha–Minguez–Shin–White [KMSW] for inner forms of U(n) under some
hypotheses. (See [Mok15, Section 2.6] for a summary of some intermediary results.)
These latter results rely on the stabilization of the twisted trace formula which was
established in [MW17], and also require the general weighted fundamental lemma
which is expected to be finished by Chaudouard and Laumon. Work in progress
of Kaletha–Minguez–Shin is expected to complete the proof of [KMSW, Theorem*
1.7.1], and we will assume this in our subsequent congruence results.

In fact the cases that we need are in some sense easier than cases already es-
tablished in the literature (e.g., [HT01], [Lab11], [Shi11], [Mok15]), as the only
non-quasi-split forms we consider are certain compact forms, where the trace for-
mula analysis is simpler and one does not have endoscopic contributions. However,
to our knowledge the cases we use (definite unitary groups over division algebras)
have not been explicitly dealt with in the literature.

To describe the classification, in this section we let G be an arbitrary inner form
of G′ = U(n). In particular, we allow G = G′.

As in [Mok15], the set of formal global parameters for G′ is the set Ψ(G′) con-
sisting of formal sums (up to equivalence) ψ = ψ1 � · · · � ψm of formal tensors
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ψi = µi� νi, where µi is a cuspidal automorphic representation of GL(ni,AE) and
νi is the ri-dimensional irreducible representation of SU(2), such that

∑
niri = n

and the parameter ψ is conjugate self-dual. If m = 1, we call ψ simple. If each
νi = 1, we call ψ generic. Set dimψi = niri.

According to the Moeglin–Waldspurger classification, µi � νi corresponds to a
discrete automorphic representation σψi of GL(niri,AE), which is cuspidal if ri = 1.
Thus by Langlands theory of Eisenstein series, ψ corresponds to an automorphic
representation σψ of GLn(AE). Let Ψ2(G′) denote the subset of square-integrable
parameters, which are of the form ψ = ψ1 � · · ·�ψm where the ψi’s are all distinct
and each ψi is conjugate self-dual. Let Ψ2(G′, std) be the subset of Ψ2(G′) which
“factor through” the standard L-embedding std : LG′ → LResE/F (G′) (this set is
denoted Ψ2(G′, ξ1) in [Mok15, Definition 2.4.5]).

Let ψ = ψ1 � · · · � ψm ∈ Ψ2(G′). One associates to ψ a component group
Sψ ' (Z/2Z)m

′
(denoted S̄ψ in [KMSW]), and a canonical sign character εψ of

Sψ. Here 0 ≤ m′ ≤ m—see [Mok15, (2.4.14)] for a precise description of m′. We
note εψ = 1 if ψ is generic. Then there is a global packet Πψ(G) = Πψ(G, ξ, εψ)
of representations attached to an inner twist (G, ξ) that is a certain subset of
a restricted product of local packets consisting of elements which are globally
compatible with εψ. (Here ξ is an F̄ -isomorphism from G to G′ exhibiting G as
an inner form of G′.) The role of εψ is to give a parity condition for a product of
members of local packets to lie in the global packet.

The packet Πψ(G) is necessarily empty if ψ is not locally relevant everywhere
for G. Specifically, if v is split in E/F , and G(Fv) ' GL(rv, Dv) where Dv is a
central Fv-division algebra of degree dv, then for ψ = ψ1 � · · ·�ψm to be relevant
it is necessary that dv | dimψi for each i.

For ψ ∈ Ψ2(G′, std) and π ∈ Πψ(G), we call the associated automorphic repre-
sentation πE := σψ of GL(n,AE) the (standard) base change of π. Note that πE is
cuspidal if and only if ψ = πE � 1, i.e., if and only if ψ is simple generic. If πE is
cuspidal and v = ww′ is a split place for E/F , then πv ' πE,w when Av is split, and
more generally πv corresponds to πE,w via the Jacquet–Langlands correspondence
for GL(n)/E.

Then the κ = 1 and χκ = 1 case of [KMSW, Theorem* 1.7.1] states that we
have a G(A)-module isomorphism:

(EC-U) L2
disc(G(F )\G(A)) '

⊕
ψ∈Ψ2(G′,std)

⊕
π∈Πψ(G)

π.

A consequence of this is a generalized Jacquet–Langlands correspondence for
unitary groups. Namely, fix an inner form G of G′, so G(Fv) ' G′(Fv) for almost
all v. For simplicity, assume ψ ∈ Ψ2(G′, std) is simple generic, so we may view
ψ as a conjugate self-dual cuspidal representation of GLn(AE). Then the packet
Πψ(G′) is non-empty—in fact it contains a cuspidal generic representation of G′
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[Mok15, Corollary 9.2.4]. If π ∈ Πψ(G) we write JL(π) = Πψ(G′) for the Jacquet–
Langlands correspondent to the packet Πψ(G). For v split in E/F and π′ ∈ JL(π),
πv and π′v correspond via the local Jacquet–Langlands correspondence for GLn(Fv),
and necessarily π′v ' πv if G(Fv) ' G′(Fv) ' GLn(Fv).

It is expected that generic packets are tempered. If ψ is cohomological, then
Shin [Shi11] (together with [CH13] when n is even and ψ∞ is not Shin-regular)
guarantees that ψv is tempered at all finite v. Now let us also assume ψ is coho-
mological.

For π′ ∈ Πψ(G′), the local packets Πψv for π and π′ are the same at almost all
places. But, by definition, elements of the global packets correspond locally to the
trivial character of the component group (and thus unramified local parameters
ψv) almost everywhere. Since ψv is generic and bounded (tempered), the local
packet Πψv(G

′(Fv)) is in bijection with the dual of the component group at nonar-
chimedean v ([Mok15, Theorem 2.5.1(b)]). Consequently, πv ' π′v for almost all
v.

In fact we can say more. Since ψ is simple generic, we have |Sψ| = 1 ([Mok15,
(2.4.14)]). This means there is no parity condition associated to εψ required for a
product π′ = ⊗π′v of local components of packets to lie in the global packet Πψ(G′).
Hence, given π, we may always choose π′ ∈ JL(π) such that π′v ' πv whenever
G(Fv) ' G′(Fv). Moreover, at all other v, we can choose π′v freely within the local
packet Πψv(G

′(Fv)).

3.2. A cuspidality criterion for base change. For the remainder of this sec-
tion, we return to our assumption that G = UA,∗(n) is a definite unitary group.

Proposition 3.2. Assume (EC-U). Suppose n is prime and Aw is a division
algebra for some finite prime w of E. If π occurs in A(G,K), and π is not 1-
dimensional, then πE is cuspidal.

Proof. Necessarily, there is a finite prime v of F which splits as v = ww′ for some
w′. Then G(Fv) ' A×w is the multiplicative group of a degree n division algebra.
Let ψ ∈ Ψ2(G′, std) be the parameter associated to π. Then for ψ to be relevant, we
need ψ to be simple, i.e., ψ = µ� ν for some cuspidal automorphic representation
µ of GLm(AE) and ν of dimension r = n

m
.

Since n is prime, either m = 1 or m = n. If m = n, we are done. Otherwise,
the proposition follows from the following lemma, which was kindly explained to
us by Sug Woo Shin. �

Lemma 3.3. Assume (EC-U). Suppose π is an automorphic representation of
G associated to a simple parameter ψ = µ � ν where µ is a representation of
GL(1,AE). Then π is 1-dimensional.

Proof. Suppose v = ww′ is split in E. The local base change πE,w is a 1-dimensional
representation of GLn(Ew). Then πv ' πE,w, so πv is 1-dimensional. Since the
strong approximation property with respect to v is satisfied by G1 = {g ∈ G :
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det g = 1} (see [PR94, Theorem 7.12]), πv trivial on G1(Fv) implies π is trivial on
G1(A). Thus π is 1-dimensional. �

3.3. Eisenstein congruences. Let K =
∏
Kv ⊂ G(A) be a compact open sub-

group which is hyperspecial and maximal at almost all v. We assume that Kv = Gv

for v | ∞, and place the following assumptions on Kv for v <∞.
First suppose v splits in E/F . Then we can write Gv = GLrv(Dv) for some

division algebra Dv of degree dv with dvrv = n. LetOv be an order of Dv containing
the unramified field extension of Fv of degree dv (e.g., Ov is the maximal order in
Dv). We assume the diagonal subgroup (O×v )rv ⊂ Kv. This holds, for instance,
when Kv is the stabilizer of a lattice of the form I1 ⊕ · · · ⊕ Irv ⊂ Drv

v where each
Ii is left Ov-ideal on Dv.

Next suppose v is ramified or inert in E/F , so Av is split. Assume Gv has a
maximal torus Tv ' (E×v )r × (E1

v)
s for some r, s with 2r + s = n, such that the

integral points of Tv are contained in Kv, i.e., (o×Ev)
r × (E1

v)
s ⊂ Kv. This holds for

instance if Kv is the stabilizer of a lattice of the form I1 ⊕ · · · ⊕ In ⊂ En
v where

each Ii is a oEv -ideal (in which case s = n).
The above assumptions guarantee that for all v <∞, (i)Kv∩Z(Gv) = U(1, ov) =

{a ∈ o×E,v : aā = 1}, and (ii) detKv = U(1, ov). Note for v <∞, if Ev/Fv is a field

then U(1, ov) = U(1, Fv) = E1
v , whereas if Ev/Fv is split then U(1, ov) ' o×v .

Consequently, if π occurs in A(G,K, ω), then ω is a character of U(1,A) which
is invariant under U(1, F ) and K ∩ Z(A) = U(1, ô) U(1, F∞). Thus the rele-
vant central characters for us will be characters ω of the class group Cl(U(1)) =
U(1, F )\U(1,Af )/U(1, ô).

Any 1-dimensional representation π occurring in A(G,K) is of the form π =
χ ◦ det, where χ is a character of U(1,A). From Lemma 3.1 and our assumptions
on K, we in fact see that χ must be a character of Cl(U(1)).

We can apply Theorem 2.1 or Corollary 2.4 to construct congruences onA(G,K).
However, since A(G,K) admits many 1-dimensional representations in general,
even with trivial central character, we need more to guarantee we get congruences
with non-abelian forms.

3.3.1. Congruence modules. Fix a finite abelian group H and let L be a number
field which contains all character values for H. Let X(R) be the set of R-valued
class functions for R = Z or R = L. Endow X(L) with the usual inner product
(·, ·). Decompose X(L) = X1(L)⊕X0(L) where 1 is the trivial character of H and
X1(L) = L1. Let X1(Z) = X1(L)∩X(Z) = Z1 and X0(Z) = X0(L)∩X(Z). Also,
let X1(Z) (resp. X0(Z)) be the image of the orthogonal projection X(Z)→ X1(L)
(resp. X(Z) → X0(L)). Then X1(Z) ⊕ X0(Z) ⊂ X(Z) ⊂ X1(Z) ⊕ X0(Z). We
consider the congruence module C0(H) = X(Z)/(X1(Z) ⊕ X0(Z)). (See [Gha02]
for an introduction to congruence modules.) One readily sees that the projection
X(L) → X1(L) induces an isomorphism C0(H) ' X(Z)/(X1(Z) ⊕ X0(Z)) '
X1(Z)/X1(Z). One similarly has an isomorphism with X0(Z)/X0(Z).
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Lemma 3.4. For a positive integer n, there exists φ ∈ X0(Z) such that φ ≡ 1

mod n if and only if C0(H) contains an element of order n.

Proof. First note if φ ∈ X0(Z) such that φ ≡ 1 mod n, then the projection of
1
n
(φ − 1) to X1(L) is the element − 1

n
1 ∈ X1(Z), and thus gives an element of

order n in C0(H). Conversely, suppose ψ ∈ X(Z) is an element of order n in
C0(H). Then we can write ψ = a

n
1 − 1

n
φ where a ∈ Z and φ ∈ X0(Z). Since

projection gives the isomorphism C0(H) ' X1(Z)/Z1, a
n

has order n mod Z.
Thus after scaling ψ (and correspondingly φ) we may assume a ≡ 1 mod n. Then
φ ≡ 1 mod n. �

Lemma 3.5. As Z-modules, C0(H) ' H.

Proof. First suppose that H = H1 ×H2. For i = 1, 2, write X(R;Hi), X0(R;Hi),
etc. for the corresponding objects for the group Hi. It is not hard to see that
X(Z) = X(Z;H) = {φ1 ⊗ φ2 : φi ∈ X(Z;Hi)}. Thus we may identify X(Z;H) =
X(Z;H1)⊕X(Z;H2). This identifies the Z-submodule X1(Z;H)⊕X0(Z;H) with
X1(Z;H1)⊕X0(Z;H1)⊕X1(Z;H2)⊕X0(Z;H2). Hence C0(H) ' C0(H1)⊕C0(H2).
This reduces the proof to the case that H = 〈g〉 is cyclic of order n, which we
assume now.

If χ1, . . . , χn are the irreducible characters of H, then 1
n
(χ1 + · · ·+ χn) ∈ X(Z).

Hence 1
n
1 ∈ X1(Z). Conversely, suppose 1

m
1 ∈ X1(Z). Then there exists φ ∈

X0(Z) such that φ ≡ 1 mod m. Let aj = φ(gj) for 1 ≤ j ≤ n. Then n ·
(χ,1) =

∑
aj = 0 but also

∑
aj ≡ n mod m, hence m | n. Therefore C0(H) '

X1(Z)/Z1 ' H. �

The relevant consequence for us is the following. Let e(H) denote the exponent
of a finite group H: if pr - e(H) then there is no congruence mod pr between
the trivial character of H and any Z-valued linear combination of the non-trivial
characters of H.

Proposition 3.6. Let h1
E = |Cl(U(1))| and e1

E be the exponent of Cl(U(1)).

Suppose p | m(K)

gcd(n,e1E)h1E
and n is odd. Then there is a non-abelian eigenform

φ ∈ A(G,K, 1) such that φ is Hecke congruent to 1 mod p.

Remark 3.7. When F = Q, h1
E = 2−thE, where hE is the class number of E and

t is the number of primes of Q ramified in E. See [Shi97, Section 24.5] for the
general case.

Proof. By our assumptions on K, we have KZ = U(1, ô)U(1, F∞), so m(KZ) =
|Cl(U(1))|. Thus Corollary 2.4 says there exists an eigenform φ ∈ A0(G,K, 1)
which is Hecke congruent to 1 mod p. We want to show we can take φ to be
non-abelian.

Let Ḡ = G/Z and K̄ = Z(A)K/Z(A). Note the abelian elements ofA(G,K, 1) =
A(Ḡ, K̄) are generated by the characters χ◦det where χ is a character of Cl(U(1))
of order dividing n. We may view such χ as factoring through the largest quotient
H of Cl(U(1)) of exponent dividing n.
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Recall that the existence of such a φ arose from an integral element φ′ ∈
AZ

0 (Ḡ, K̄) such that φ′ ≡ 1 mod pr where r = vp(m(K̄)) = vp(m(K)) − vp(h
1
E).

For a suitable rationality field L, decompose AL0 (Ḡ, K̄) = X1(L) ⊕ X2(L) where
X1(L) consists of the abelian forms orthogonal to 1 and X2(L) is spanned by the
non-abelian eigenforms.

We claim φ′ 6∈ X1(L). Since det : G(A)→ U(1,A) is surjective, our assumptions
on K imply that det induces a surjective map ∆ : Cl(K̄) → H. Thus if we had
φ′ ∈ X1(L), composing it with ∆ gives Z-valued class function ψ on H such that
ψ ≡ 1 mod pr. But this is impossible by the above lemmas as vp(

pr

gcd(n,e1E)
) > 0

implies pr does not divide the exponent of H.
Hence φ′ has nonzero projection to X2(L). Therefore applying the lifting lemma,

Lemma 2.2, with W = X2(L), we obtain an eigenform φ ∈ X2(L) which is Hecke
congruent to 1 mod p. �

3.3.2. Non-endoscopic congruences. We now define the notion of congruences on
the quasi-split form G′. For convenience, we talk about congruences of repre-
sentations. Suppose K ′ =

∏
K ′v is an open compact subgroup of G′ which is

hyperspecial at all v 6∈ S, and π and π′ are automorphic representations of G′(A)
which are K ′v-unramified at all v 6∈ S. For αv ∈ G′v, we let λαv(π) be the eigenvalue

of the local Hecke operator K ′vαvK
′
v on π

K′
v

v . We say π and π′ are Hecke congruent
(away from S) mod p if λαv(π) ≡ λαv(π

′) mod p for some prime p of Q̄ above p
and all v 6∈ S, αv ∈ G′v.

Consider the simple parameter ψ0 = 1 � ν(n) ∈ Ψ2(G′, std), where ν(n) is the
irreducible n-dimensional representation of SU(2). This is the parameter of the
trivial representations 1G and 1G′ of G and G′. The base change of 1G′ to GLn(AE)

is the residual contribution of the Eisenstein series induced from the δ
−1/2
GL(n) of the

Borel.

Theorem 3.8. Suppose n is an odd prime and assume (EC-U) for n. Let A/E be
a degree n central simple algebra which is division at a non-empty set Ram0(A) of
finite places of F which split in E/F , and let S0 ⊂ Ram0(A). Consider a definite
unitary group G = UA(n) over A as above. Let K =

∏
Kv ⊂ G(A) be a compact

open subgroup satisfying the assumptions at the beginning of this section, and also
assume that Kv = G1(Fv) for v ∈ S0.

Suppose that p | m(K)

gcd(n,e1E)h1E
. Then there exists a cuspidal automorphic represen-

tation π of G′(A) with trivial central character such that: (i) the base change πE
is cuspidal, (ii) πv0 is an unramified twist of Steinberg for v0 ∈ S0; (iii) πv has a
nonzero Kv-fixed vector when G(Fv) ' G′(Fv); (iv) πv is a holomorphic weight n
discrete series for v | ∞; and (v) π is Hecke congruent to 1G′ mod p.

Note that by the classification of central simple algebras over number fields and
Landherr’s theorem, given E/F and any non-empty finite set Σ of finite places of
F split in E/F , there exists G = UA(n) as in Theorem 3.8 with Ram0(A) = Σ.
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We make a few remarks on such a π as in the theorem. First, it cannot arise
as an endoscopic lift from smaller unitary groups, so this congruence is “native”
to U(n). Second, by the central character condition, (ii) means πv0 is a twist of
Steinberg by an unramified character of order dividing n. Also, (iii) implies πv will
be unramified whenever Kv is hyperspecial. Moreover, if every finite place v 6∈ S0

satisfies G(Fv) ' G(F ′v), and if Kv is good special maximal compact subgroup at
all of these places, then we have strong control over π at all places: (iv) describes
π∞ completely; (ii) says πv is an unramified twist of Steinberg for v ∈ S0, and (iii)
says πv is Kv-spherical at all remaining v.

Proof. First Proposition 3.6 tells us there exists a non-abelian eigenform φ ∈
A(G,K, 1) which is Hecke congruent to 1 mod p. Let σ be the associated au-
tomorphic representation of G(A). By Proposition 3.2, we know σE is cuspidal.
We may take π ∈ JL(σ) such that (iv) holds and πv ' σv when G(Fv) ' G′(Fv).
For v ∈ S0, since Kv0 = G1

v0
we must have that σv0 = χv0 ◦ det, where χv0 is an

unramified character of F×v0 , so the local Jacquet–Langlands correspondent πv0 is
Steinberg twisted by χv0 . Finally, π satisfies (v) because 1G′ has the same Hecke
eigenvalues as 1 ∈ A(G,K, 1) at almost all places. �

We now describe m(K) for nice maximal compact subgroups K using [GHY01].
For simplicity we restrict to odd n. If desired, one can obtain masses for smaller
compact subgroups K ′ ⊂ K by recalling that m(K ′) = [K : K ′]m(K). Let χE/F
be the quadratic idele class character of F associated to E/F .

Proposition 3.9. Let G = UA(n) be a definite unitary group over A where n is
odd. Let Ramf (E) (resp. Ramf (A)) denote the set of finite primes of F above which
E (resp. A) is ramified. Assume Aw is division for each w above v ∈ Ramf (A). Let
S = Ramf (E) ∪Ramf (A). Take K =

∏
Kv such that Kv is maximal hyperspecial

for finite v 6∈ S, Kv = G1(Fv) for v ∈ Ramf (A), Kv is the stabilizer of a maximal
lattice for v ∈ Ramf (E), and Kv = G(Fv) for v | ∞. Then

(3.1) m(K) = 21−nd−|Ramf (E)| ×
n∏
r=1

L(1− r, χrE/F )×
∏

v∈Ramf (A)

(
n−1∏
r=1

(qrv − 1)

)
,

where d = [F : Q].

Proof. A general mass formula is given in [GHY01, Proposition 2.13], which is
explicated for definite odd unitary groups over fields in Proposition 4.4 of op. cit.
From those calculations, it follows that

m(K) = 21−nd ×
n∏
r=1

L(1− r, χrE/F )×
∏
v∈S

λv,

where λv is as follows. For a finite place v, let H ′v be Gross’s canonical integral
model of Hv := G′v. Let Gv be the smooth integral model associated to a parahoric
such that Kv = Gv(ov). By our hypotheses, S is the set of finite places such that
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Gv 6' H0
v. Let Ḡv and H̄0

v be the maximal reductive quotients of the special fibers
of Gv and H0

v, which are reductive groups over kv = ov/pv, with Ḡv possibly being
disconnected. Then for v ∈ S,

λv =
q
−N(H̄0

v )
v |H̄0

v (kv)|
q
−N(Ḡv)
v |Ḡv(kv)|

,

where N(·) denotes the number of positive roots over k̄v. When Gv is quasi-split,
loc. cit. tells us λv = 1

2
if Ev/Fv is ramified.

So we need only to compute λv for v ∈ Ramf (A). In this case v splits in
E/F so H̄0

v ' GL(n, kv). Let Ov = Av and Pv the prime ideal of Ov. Then Gv '
O×v /(1+Pv) ' F×qnv , which gives λv = q

−n(n−1)/2
v

∏n−1
r=1 (qnv −qrv) =

∏n−1
r=1 (qrv−1). �

Remark 3.10. By [GHY01], we can extend the formula (3.1) to include finite
places v such thatGv is quasi-split andKv is a special but not hyperspecial maximal
compact. Each such place will contribute a factor of λv = qn+1

q+1
to m(K).

Consequently, Theorem 3.8 gives non-endoscopic Eisenstein congruences mod p
which are Steinberg at v whenever p is a sufficiently large (depending on n and
E/F ) prime dividing some qrv − 1 (for 1 ≤ r ≤ n− 1).

Example 3.11. Suppose F = Q, E = Q(i). Then |Cl(U(1))| = 1. Let A/E be a
central division algebra of odd prime degree n = 2m + 1 which is ramified only at
the primes of E above a fixed rational prime ` ≡ 1 mod 4 (so necessarily division at
w | `). Write χ = χE/F . It is well known that L(1− r, χr) = −1

r
Br,χr (generalized

Bernoulli number). Thus taking G and K as in Proposition 3.9, we get

m(K) =
1

2nn!

m∏
r=1

B2r ×
m∏
r=1

B2r+1,χ ×
n−1∏
r=1

(`r − 1).

Suppose p > n is a prime dividing some `r−1 where 1 ≤ r ≤ n−1. Since p > n,
the von Staudt–Clausen theorem tells us that p does not divide the denominators
of any of the Bernoulli numbers B2, B4, . . . , B2m. Also B1,χ, B3,χ, . . . , Bn,χ all have
denominator 2. Hence Theorem 3.8 yields a non-endoscopic holomorphic weight n
cuspidal representation π of G′(A) = U(n,A) Hecke congruent to 1G′ mod p such
that π is (i) unramified at each odd finite v 6= `, (ii) spherical at v = 2, and (iii) an
unramified twist of Steinberg at v = `. (By working with smaller compact subgroups
K, one can remove the condition p > n.)

The same result is true for some additional values of p, independent of `, coming
from numerators of Bernoulli numbers. For instance, we can always take p = 61
for 7 ≤ n ≤ 59 as 61 | B7,χ; we can take p ∈ {277, 2659} if 11 ≤ n < p as
277 · 2659 | B9,χ; we can take p = 19 if n = 13, 17 as 19 | B11,χ; or we can take
p ∈ {43, 691, 967} if 13 ≤ n < p as 691 | B12 and 43 · 97 | B13,χ.
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4. Eisenstein congruences for GL(2)

In this section, we discuss weight 2 Eisenstein congruences in the case of GL(2)
(or rather PGL(2)). This was treated in [Mar17] over totally real number fields
F originally under the assumption that hF = h+

F . However, as pointed out to us
by Jack Shotton, the published argument only gives cuspidal congruences mod p
when p - hF and hF is odd.2

Here we explain how to remove this class number condition by working with
PGL(2) rather than GL(2) and using congruence modules as in Section 3.3.1.
Moreover, even in the case that p - hF and hF is odd, we slightly refine our earlier
result by making use of [Mar20] together with congruence modules.

Let F be a totally real number field of degree d, and B/F be a definite quaternion
algebra. Let O be a special order of B (in the sense of Hijikata–Pizer–Shemanske)
of the following type. For a prime v split in B, assume Ov is an Eichler order of
level prvv (with rv = 0 for almost all v). For v a finite prime at which B ramifies,
assume Ov is of the form oE,v +P2m

v where m is a non-negative integer, oE,v is the
ring of integers of the unramified quadratic extension Ev/Fv and Pv is the unique
prime ideal for Bv. In the latter case we say Ov is a special order of level p2m+1

v (of
unramified quadratic type). Let N1 (resp. N2) be

∏
v p

rv
v where v ranges over the

finite primes such that B/F splits (resp. ramifies) and prvv is the level of Ov. Let
N = N1N2. Let E2,N be a parallel weight 2 Eisenstein eigenform over F of level
N which has Hecke eigenvalue qv (resp. 1) for v | N1 (resp. v | N2), and Hecke
eigenvalue qv + 1 for finite v - N.

Theorem 4.1. Suppose p is a rational prime which divides

(4.1) 21−d−e−|{v|N1}||ζF (−1)|
∏
v|N1

qrv−1
v (qv − 1)

∏
v|N2

qrv−1
v (qv + 1),

where e is the 2-exponent of the narrow class group Cl+(F ). Then there exists a
parallel weight 2 cuspidal Hilbert eigenform f of level N and trivial nebentypus such
that f is Hecke congruent to E2,N mod p at all finite v such that rv ≤ 1. Moreover,
for v | N1 we may take f such that the v-part of the exact level of f is psvv , where
(i) sv is odd; (ii) sv = 1 if p - qv; and (iii) sv = rv for any single chosen v | N1

lying above p (if such a v exists).

Proof. Let G = PB× and K =
∏
Kv, where Kv the image of O×v in PB× for

v < ∞ and Kv = Gv for v | ∞. From the SO(3) case of the mass formula in
[GHY01], one deduces that (4.1) is 2−em(K) (compare with the mass formula in
[Mar17]). As explained in [Mar17], the constant function 1 on Cl(K) is a Hecke
eigenfunction of all Hecke operators Tv (v finite), with the same Hecke eigenvalues
as the modular form E2,N for any v with rv ≤ 1. Then by Theorem 2.1, there
exists an eigenform φ ∈ A0(G,K) such that φ is Hecke congruent to 1 mod p.

2See arXiv:1601.03284v4 for a corrected version of [Mar17].
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This congruence is also valid for ramified Hecke eigenvalues when rv = 1 (again,
see op. cit.).

Now we want to show we can take φ to be non-abelian. The abelian forms in
A0(G,K), viewed as functions on A×\B×(A)/B×(F∞), are generated by the forms
ψ ◦N , where N : B× → F× is the reduced norm and ψ is a quadratic character of
Cl+(F ). Necessarily, such a form can only be congruent to 1 mod p if p = 2. Using
the same argument as in Proposition 3.6 (the relevant congruence module for the
space of abelian forms orthogonal to 1 has 2-exponent e, whereas the congruence
module for A0(G,K) has 2-exponent v2(m(K))), gives such a non-abelian φ.

Let S(G,K) be the orthogonal complement of the abelian subspace of A(G,K).
By the Jacquet–Langlands correspondence for modular forms from [Mar20], we
have an isomorphism of Hecke modules, for the Hecke algebras away from the set
of v | N1 with rv > 1,

S(G,K) '
⊕

SM-new
2 (MN2), M =

∏
v|N1

p2mv+1
v , 1 ≤ 2mv + 1 ≤ rv.

The spaces on the right are the spaces of parallel weight 2 Hilbert cusp forms of
level MN2 which are locally new at each v |M (the associated local representation
of PGL2(Fv) has conductor p2mv+1

v ), and M runs over divisors of N1 which have
odd exponent at every v | N1. This shows (i).

Let f be a Hilbert modular form corresponding to φ. If v | N1 such that p - qv,
then if necessary we may enlarge K by taking Kv = O×B,v at v so that rv = 1. This
forces f to have exact level pv at v, i.e., we may assume (ii).

For (iii), suppose there exists v | N1 such that p | qv. If rv = 1, there is nothing
to show, so assume rv ≥ 3. Then we may use the above decomposition of S(G,K)
together with the argument from Proposition 3.6. Namely, for a sufficiently large
rationality field L, we may decompose AL0 (G,K) = X1(L)⊕X2(L), where X1(L) is
generated by abelian forms together with cuspidal eigenforms which have level at
most prv−2

v at v, and X2(L) is generated by cuspidal eigenforms which have exact
level prvv at v. Now X1(L) = AL0 (G,K ′) where K ′ is defined in the same way as K
except replacing rv with rv−2. Then the p-exponent of the congruence module for
X1 is simply vp(m(K ′)). But this is strictly less than vp(m(K)), so the argument
of Proposition 3.6 gives an eigenform in X2(L) which is Hecke congruent to 1 mod
p. �

Remark 4.2. If v | N2 such that p | (qv + 1) if rv = 1 (resp. p | qv if rv > 1), we
expect that we can also assume the f in the theorem is locally new at v. Similarly,
we expect we can impose (iii) for all v such that p | qv. This is because then the
local factor at v contributes to the vp(m(K)), i.e., contributes to the p-exponent
of the relevant congruence module. Alternatively, this factor contributes to the
depth of the congruence mentioned in Remark 2.3. In order to prove this along
the lines of our argument for (iii), we would need to know the p-exponent of the
congruence module for the v-old forms. We do not attempt to study this here.

19



Remark 4.3. Ribet and Yoo (see [Yoo19]) have studied weight 2 Eisenstein con-
gruences with fixed Atkin–Lehner signs for elliptic modular forms of squarefree
level under some conditions. If p > 2 and N is squarefree, then f as in the theo-
rem necessarily has Atkin–Lehner sign −1 at each v | N1, and Atkin–Lehner sign
+1 at each v | N2 such that the v-part of the exact level of f is pv.

Corollary 4.4. Let F = Q and p be prime. Then for any m ≥ 1 (resp. m ≥ 3)
if p is odd (resp. p = 2), there exists a newform f ∈ S2(p2m+1) which is Hecke
congruent to E2,p mod p away from p.

5. Special mod p congruences for U(p)

Given a weight 2 cuspidal newform f on PGL(2) whose p-th Fourier coefficient
is −1 for a p dividing the level (i.e., locally is the unramified quadratic twist of
Steinberg at p), one can use quaternionic modular forms to construct a newform
g of the same weight and level which is congruent to f mod 2 and has Fourier
coefficient +1 at p (i.e., locally is the untwisted Steinberg at p), at least in the case
that the level is a squarefree product of an odd number of primes [Mar18b]. In
general g may be Eisenstein, but under some simple explicit conditions it can be
chosen to be cuspidal. Here we extend this to higher rank in the setting of unitary
groups.

Let E/F be a CM extension of number fields. Let S be a non-empty finite set of
finite places of F which split in E. Consider a definite unitary group G = UA(n),
where A/E is a degree n central division algebra such that, for each finite v ∈ S,
G(Fv) ' D×v for some division algebra Dv/Fv. Let K ⊂ G(A) be as in the
beginning of Section 3.3 such that Kv ' O×Dv for v ∈ S.

If π occurs in A(G,K; 1), then, for v ∈ S, πv is 1-dimensional, and thus of the
form µv ◦det for some unramified character µv : F×v → C× such that µnv = 1. (Here
det denotes the reduced norm from Dv to Fv.) Consider a collection µS = (µv)v∈S
of such µv. We denote by A(G,K; 1)µS the subspace of A(G,K; 1) generated by
πK where π runs over all π contributing to A(G,K; 1) such that πv ' µv ◦ det
for all v ∈ S. When µv = 1 for all v ∈ S, we write this as A(G,K; 1)1S . Let
ζm = e2πi/m.

Lemma 5.1. Fix p | n. Suppose µv has prime power order prv | n for all v ∈ S.
Let O be the ring of integers of some number field containing ζpr , and p a prime
of O above p. Then for any nonzero φ ∈ AO(G,K; 1)µS , there exists a nonzero
φ′ ∈ AO(G,K; 1)1S such that φ′ ≡ φ mod p.

Proof. Let Ḡ = G/Z and K̄ = Z(A)K/Z(A). Then we may view φ as a function
on Cl(K̄). For v ∈ S, fix a uniformizer $D,v of Dv such that det$D,v = $v. Then
$D,v acts on Cl(K̄) via right multiplication with order dividing n. Denote this
action by σv. Let Y1, . . . , Yt be the orbits of the ensuing action of Γ =

∏
v∈S〈$D,v〉

on Cl(K̄).
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Note that for φ ∈ A(G,K; 1), we have φ ∈ A(G,K; 1)µS if and only if φ(σv(y)) =
µv($v)φ(y) for all y ∈ Cl(K̄), v ∈ S. Fix some orbit Yi and write Yi = {y1, . . . , ys}.
Then for any yj ∈ Yi, there is some sequence of σv’s (with v ∈ S) whose composition
sends y1 to yj. Hence φ(yj) = ζφ(y1) for some p-power root of unity ζ. Since
ζ ≡ 1 mod p, defining φ′(yj) = φ(y1) for 1 ≤ j ≤ s gives a function on Yi which is
congruent to φ mod p. Defining φ′ this way on each orbit completes the proof. �

The following is a partial analogue of [Mar18b, Theorem 1.3] in higher rank, and
the proof is similar in spirit.

Theorem 5.2. Let n = p be an odd prime, and assume (EC-U) for n. Let S be a
finite set of finite places of F which are split in E/F . Suppose p does not divide
|Cl(U(1))| nor

p∏
r=1

L(1− r, χrE/F )×
∏
v∈S

(
p−1∏
r=1

(qrv − 1)

)
.

For each v ∈ S, let µv be an unramified character of F×v of order 1 or p. For finite
v 6∈ S, assume Kv is a hyperspecial maximal compact open subgroup of Up(Fv).

Let π be an automorphic representation of G′(A) = U(p,A) holomorphic of
parallel weight p with trivial central character such that πE is cuspidal, Kv-spherical
for all finite v 6∈ S, and πv ' Stv⊗µv for all v ∈ S. Then there exists an
automorphic representation π′ of G′(A), also holomorphic of parallel weight p with
trival central character and π′E cuspidal, such that π′v is Kv-spherical for all finite
v 6∈ S, π′v ' Stv for all v ∈ S and π is Hecke congruent to π′ mod p.

Proof. Let G = UA(p) be a totally definite inner form of G′ which is locally iso-
morphic to G′ at all finite places outside of S and compact at each v ∈ S. Now
π corresponds to a simple generic formal parameter ψ, which we may think of
as the cuspidal representation πE of GLp(AE). Then there exists an automorphic
representation σ ∈ Πψ(G) such that σv ' πv for all finite v 6∈ S, σv ' µv ◦ det for
v ∈ S, and σv is trivial for v | ∞.

For v ∈ S, let Dv/Fv be a division algebra isomorphic to Aw/Ew for some w | v
and put Kv = O×Dv . For v | ∞, put Kv = Gv. Set K =

∏
Kv. Then σ occurs

in A0(G,K; 1) and we may take a nonzero φ ∈ σK to have values in the ring of
integers O of some number field L. Let p be a prime of O above p.

If φ ≡ 0 mod p, we may consider the Hilbert class field HL of L so that p is
unramified and principal in HL. Thus we may scale φ by an element of HL to
assume that φ 6≡ 0 mod p, and moreover φ 6≡ 0 mod P for some prime P of HL

above p. Hence by replacing L with HL and p with P if necessary, we may and
will assume φ 6≡ 0 mod p.

By Lemma 5.1, there exists a nonzero φ′ ∈ AO(G,K; 1)1S such that φ′ ≡ φ mod
p. We claim φ′ is non-abelian. First note that, since p - |Cl(U(1))|, the only non-
abelian forms in A(G,K; 1) are constant functions. However, if φ′ = c1 for some
c ∈ O, then φ ∈ A0(G,K; 1) implies 0 = (φ,1) ≡ c(1,1) ≡ cm(K) mod p. This
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would mean p | m(K), since φ′ ≡ φ 6≡ 0 mod p implies c 6≡ 0 mod p. But this is
impossible by our indivisibility assumption together with Proposition 3.9.

Then, as in the proofs of Theorem 2.1 and Theorem 3.8, we can transfer this to
a mod p Hecke congruence with a non-abelian eigenform φ′′ on G, and obtain a
congruent π′ on G′ as asserted. �

Remark 5.3. It is clear from the proof that one can allow Kv to be a finite index
subgroup of a hyperspecial maximal compact K0

v at a finite number of v 6∈ S
by also imposing the conditions p - [K0

v : Kv]. At such v, then the appropriate
statement is that both πv and π′v have nonzero Kv-fixed vectors.

Remark 5.4. In the case of weight 2 elliptic modular forms of squarefree level, we
showed in [Mar18a] that there is a strict (though small) bias towards local ramified
factors being Steinberg as opposed to the unramifed quadratic twist of Steinberg.
In [Mar18b], this bias was shown to be related to the existence of mod 2 congruences
of forms which are twisted Steinberg at certain places to untwisted Steinberg at
these places. Similarly, the above congruence result suggests a bias towards local
untwisted Steinberg representations on Up(A). Specifically, in the notation of the
proof, we expect that the number of representations occurring in A(G,K; 1)1S

is always at least the number of representations occurring in A(G,K; 1)µS . The
above result implies the analogous statement is true for mod p Hecke congruence
classes of representations.

References

[BKK14] Tobias Berger, Krzysztof Klosin, and Kenneth Kramer, On higher congruences between
automorphic forms, Math. Res. Lett. 21 (2014), no. 1, 71–82. ↑2.3

[BD16] Jonas Bergström and Neil Dummigan, Eisenstein congruences for split reductive
groups, Selecta Math. (N.S.) 22 (2016), no. 3, 1073–1115. ↑1
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