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Abstract. We formulate some refinements of Goldbach’s conjectures based on heuris-
tic arguments and numerical data. For instance, any even number greater than 4 is
conjectured to be a sum of two primes with one prime being 3 mod 4. In general, for
fixed m and a, b coprime to m, any positive even n ≡ a + b mod m outside of a finite
exceptional set is expected to be a sum of two primes p and q with p ≡ a mod m,
q ≡ b mod m. We make conjectures about the growth of these exceptional sets.

1. Introduction

Let p and q denote prime numbers. The binary (or strong) Goldbach conjecture asserts
that any even n > 2 is of the form p + q. There is both strong heuristic evidence that
this is true for sufficiently large n and enormous numerical evidence that this is true for
n > 2. The same heuristic evidence, together with equidistibution of primes congruence
classes mod m, suggests the following:

Conjecture 1.1. Fix a, b,m ∈ Z with gcd(a,m) = gcd(b,m) = 1. For sufficiently large
even n ≡ a+b mod m, we can write n = p+q for some primes p ≡ a mod m, q ≡ b mod m.

While we do not know an explicit statement of this conjecture in the literature, we do
not claim any originality in its formulation.

Denote by Ea,b,m the set of positive even n ≡ a + b mod m which are not of the
form asserted in the conjecture. This is called the exceptional set for (a, b,m), and the
conjecture asserts Ea,b,m is finite. Note for a = b = 1 and m = 2, this is a (still unknown)
weak form of the binary Goldbach conjecture. Specifically, the binary Goldbach conjecture
is equivalent to the statement that E1,1,2 = {2, 4}.

In this note, we present some heuristic and numerical investigations on the behavior
of these exceptional sets. This leads to both explicit forms of Goldbach’s conjecture with
primes in arithmetic progressions and conjectures about the growth of Ea,b,m.

First we state a few explicit Goldbach-type conjectures:

Conjecture 1.2. Any positive even n as below is of the form p+q with p and q satisfying
the following congruence conditions:

(i) any even n > 4, where p ≡ 3 mod 4;
(ii) any n ≡ 0 mod 4 except n = 4, where p ≡ 1 mod 4, q ≡ 3 mod 4;

(iii) any n ≡ 2 mod 4 except n = 2, where p ≡ q ≡ 3 mod 4;
(iv) any n ≡ 2 mod 4 except n = 2, 6, 14, 18, 62, where p ≡ q ≡ 1 mod 4.
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We note that (ii) is already implied by Goldbach’s conjecture, whereas (iii) and (iv)
are not. Then (ii) and (iii) imply (i), which may be viewed as a refinement of the binary
Goldbach conjecture. The notion that the exceptional set should be smaller in case (iii)
rather than (iv) makes sense in light of prime number races, specifically that there are
more small primes which are 3 mod 4 than 1 mod 4.

For moduli m 6= 4, we just list some sample conjectures about when every (or almost
every) multiple of m is of the form p+q with p and q each coming from single progressions
mod m:

Conjecture 1.3. Any positive even n as below is of the form p+q with p and q satisfying
the following congruence conditions:

(i) any even n ≡ 0 mod 3 except n = 6, where p ≡ −q ≡ 1 mod 3;
(ii) any even n ≡ 0 mod 5 (resp. except n=10, 20), where p ≡ −q ≡ 2 mod 5 (resp.

p ≡ −q ≡ 1 mod 5);
(iii) any even n ≡ 0 mod 7, where p ≡ −q ≡ 3 mod 7;
(iv) any even n ≡ 0 mod 11, where p ≡ −q ≡ 3 mod 11;
(v) any n ≡ 0 mod 8, where p ≡ −q ≡ 3 mod 8;

(vi) any n ≡ 0 mod 16, where p ≡ −q ≡ 3 mod 16;
(vii) any n ≡ 0 mod 60, where p ≡ −q ≡ a mod 60 and a is any fixed integer coprime to

60 which is not ±1,±11 mod 60.

Of these, only the first is a direct consequence of the binary Goldbach conjecture,
which we list simply for means of comparison. The others come from calculations that
we describe in Section 3.

Namely, we compute the following. First, we may as well assume m is even. Then
we call (a, b) or (a, b,m) admissible if a, b ∈ (Z/mZ)×. We compute the exceptions n in
Ea,b,m for all admissible (a, b,m) with m ≤ 200 up to at least n = 107. This appears
sufficiently large in our cases of consideration to believe that we find the full exceptional
sets for such (a, b,m).

Likely of more interest than numerous explicit such conjectures is a general under-
standing of the behaviour of the exceptional sets. The first question to ask is:

Question 1.4. How fast can Ea,b,m grow?

There are a few ways to interpret this: we can look at the growth of the size of |Ea,b,m|
or the growth of the sizes of the individual exceptions n ∈ Ea,b,m, and either of these
can be interpreted in an average sense or in the sense of looking for an absolute or
asymptotic bound. Let Emax(m) be the maximum of the exceptions in Ea,b,m (ranging
over a, b ∈ (Z/mZ)×) and let Lavg(m) be the average length (size) of the exceptional sets
Ea,b,m for a fixed m. Then the heuristics we discuss in Section 2 suggest the following:

Conjecture 1.5. As m→∞, we have

(i) Emax(m) := max{n ∈ Ea,b,m : n ∈ Z, a, b ∈ (Z/mZ)×} = O(m2(logm)2); and

(ii) Lavg(m) := 1
φ(m)2

∑
a,b∈(Z/mZ)× |Ea,b,m| = O(mε) for any ε > 0.

Admittedly our heuristics are rather simplistic (they are too simplistic to suggest precise
asymptotics), but since the numerical data we present in Section 3 is in strong agreement
with these heuristics, it seems reasonable to believe the above conjecture. In addition,
our numerical data suggests that Emax(m) grows roughly like a quadratic function of
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m, which suggests that the growth bound in (i) is not too much of an overestimate (see
Fig. 2).

Our data also suggests that as m grows, while the proportion of admissible (a, b) with
Ea,b,m = ∅ may decrease on average, there are still many (a, b) with no exceptional sets
(see Table 2), leading to:

Conjecture 1.6. There infinitely many tuples (a, b,m) such that Ea,b,m = ∅.

We are less confident in this conjecture as precise heuristics about this seem a bit more
delicate (we do not attempt them here), but it at least seems plausible in connection with
Conjecture 1.5. Namely, for fixed m the expected length of an exceptional set may be
something roughly logarithmic in m, but we have φ(m)2 such exceptional sets, so there
will be a good chance some of them are empty as long as the variance of |Ea,b,m| is not
too small.

We note that a number of authors (e.g., [Lav61], [BW13], [Bau17]) have studied the
behaviour of Ea,b,m analytically. However, present analytic methods seem to still be far
from showing finiteness of Ea,b,m, let alone attacking the finer questions we explore here.

Lastly, we remark that one can similarly look at versions of the ternary Goldbach
conjecture with primes in progressions. However, an answer to the binary case will also
give results about the ternary case, in the same way that the strong Goldbach conjecture
implies the weak Goldbach conjecture (the latter of which is now a theorem [Hel13]). We
simply state one ternary analogue of Conjecture 1.2(i):

Conjecture 1.7. Any odd integer n > 5 is of the form n = p + q + r for primes p, q, r
with p ≡ q ≡ 2 mod 3.

To see this, our calculations suggest E5,5,6 = {4} (see Section 3.2), which would imply
E2,2,3 = ∅, so in the conjecture we can take p+ q to be an arbitrary even number which is
1 mod 3, and then r ∈ {3, 5, 7}. Unlike the usual ternary Goldbach conjecture, this does
not seem to be known at present. See [LP10], [Sha14], [She16] for results in this direction.

Acknowledgements. The author is partially supported by a Simons Foundation Col-
laboration Grant.

2. Heuristics

Let n > 2 be even, and g2(n) be the number of ways to write n = p + q for primes p
and q. In 1922, Hardy and Littlewood conjectured

g2(n) ∼ S(n)
n

(log n)2
,

where S(n) is the singular series, which is 0 for odd n and on average it is is 2 for even
n. For a refinement, see [Gra07]. For our heuristics, we will naively approximate g2(n)
by the conjectural average 2n

(logn)2
. This simplification is justified in our heuristic upper

bounds as S(n) > 1 for even n.
Fix an even modulus m. Let r be the integer part of expected number of admissible

(a, b) ∈ ((Z/mZ)×)2 such that a+b ≡ n (averaged over even 0 ≤ n < m), i.e., r = [2φ(m)2

m ].
We want to estimate the probability that n ∈ Ea,b,m for some admissible pair (a, b) ∈
((Z/mZ)×)2. We will use the following simplistic but reasonable model: we think of
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ordered pairs of primes (p, q) solving p+q = n as a collection of g2(n) independent random
events, with the reduction mod m of (p, q) landing in any of the r admissible classes
(a+mZ, b+mZ) with equal probability. (Obviously (p, q) and (q, p) are not independent,
but this is not so important for our heuristics.) Immediately this suggests Conjecture 1.1,
but we want to speculate more precisely on the growth rate of the exceptional sets Ea,b,m
as m→∞.

We recall the coupon collector problem. Say we have r initially empty boxes, and
at each time t ∈ N, a coupon is placed in one box at chosen random. Assume at each
stage, each box is selected with equal probability 1

r . Let W = Wr be the random variable
representing the waiting time until all boxes have at least 1 coupon.

Let Xs denote a geometric random variable such that P (Xs = k) = (1 − s)k−1s is
the probability of initial success after exactly k trials, where each trial has independent
probability of success s. The problem is to determine the expected value E[W ]. It is easy
to see that W = Xr/r + X(r−1)/r + · · ·X1/r (where the Xs’s are independent), and thus

E[W ] = rHr, where Hr =
∑r

j=1
1
j is the r-th harmonic number.

Thus, in our model, the probability that n ∈ Ea,b,m for some (a, b) is simply P (Wr >
g2(n)). One has

P (W > k) = 1−
k∑
j=0

r!

rj

{
j − 1
r − 1

}
= 1− r!

rk

{
k
r

}
=

r−1∑
j=0

(−1)r−j+1

(
r

j

)(
j

r

)k
,

where
{
k
r

}
denotes the Stirling number of the second kind, i.e., the number of ways to

partition a set of size k into r nonempty subsets. Now we can bound each term on the
right by

(
r

[r/2]

)
(1− 1/r)k, which will be less than ε

k2r4
for r large if

−k log(1− 1

r
) = k(

1

r
− 1

r2
+ · · · ) & r log 2+2 log k+4 log r− log ε & log

(
r

[r/2]

)
− log

ε

k2r4
.

We can make this asymptotic inequality hold by taking k = Cr2, where C depends on ε,
and then

P (Wr > k) <
ε

k2r3
.

Consider the set ΣC of {(r, k) : r = [2φ(m)2

m ], k = [ 2n
(logn)2

] > Cr2}. Note for r and k

of this form, the condition k > Cr2 is satisfied when n
(logn)2

> 2Cm2, and thus when

n > cm2(logm)2 for a suitable constant c. Thus, for suitably large c, we have a heuristic
upper bound on the probability that some Ea,b,m contains an element n > cm2(logm)2

of ∑
(r,k)∈ΣC

rP (Wr > k) ≤
∑

(r,k)∈ΣC

ε

k2r2
< c0ε,

for a uniform constant c0. The factor of r on the left inside the sum comes from accounting
for each of the (on average) r classes of pairs (a, b) given m, n.

This suggests the following bound on the growth of exceptional sets stated in Conjec-
ture 1.5(i):

(2.1) Emax(m) = O(m2(logm)2) as m→∞.
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Now let us consider the lengths |Ea,b,m| of the exceptional sets. For fixed m, we will
model |Ea,b,m| as a random variable L(m). For a fixed n ≡ a+ b mod m, the probability

(using the model described above) that n ∈ Ea,b,m is simply (1 − 1
r )g2(n). Hence the

expected size of an exceptional set is

E[L(m)] =
∑

n≡a+b mod m

αg2(n), α = 1− 1

r
.

We approximate this with the sum (over all integers n ≥ 2):

E[L(m)] ≈ 1

m

∞∑
n=2

α
2n

(logn)2 .

Then for 0 < δ < 1, we have

mE[L(m)]�
∫ ∞

0
α2xδ dx =

1

2δ| lnα|1/δ

∫ ∞
0

u1/δ−1e−u du =
1

2δ| lnα|1/δ
Γ(

1

δ
).

Note d
dr | lnα| =

d
dr (ln(r − 1)− ln r) = 1

r2−r , so as r →∞, we have 1
| lnα| ∼ r. This gives

(2.2) E[L(m)]� r1/δ

2m
= O(mε), ε =

1

δ
− 1,

as stated in Conjecture 1.5(ii).

3. Numerics

Now we present numerical data on the exceptional sets Ea,b,m for (even) m ≤ 200.

3.1. The method and computational issues. Our approach, similar to many nu-
merical verifications of Goldbach’s conjecture, was roughly as follows. To find {n ∈
Ea,b,m : n ≤ N}, we start with two sets of primes P = {p ≡ a mod m : p ≤ M} and
Q = {q ≡ b mod m : q ≤ N} and determine which n ≤ N are not of the form p + q for
p ∈ P , q ∈ Q, with M on the order of 104 or 105 depending on m. Then any potential
exceptions below M are guaranteed to actually lie in Ea,b,m, and any larger potential
exceptions we checked individually by testing primality (deterministically) of n − p for
various p.

For each even m ≤ 200, and a, b ∈ (Z/mZ)×, we checked up to at least N = 107 using
Sage. (We checked Conjecture 1.2 up to N = 108.) We note that the binary Goldbach
conjecture has been numerically verified for a much, much larger range (up to 4 · 1018 in
[OeSHP14]). While one could certainly extend our calculations for larger N (and m) with
more efficient implementation and computing resources, our goal here is not to push the
limits of calculation, but rather to generate a reasonable amount of data to help formulate
and support our conjectures.

That said, there are a couple of obstacles to do a similar amount of verification for
various Ea,b,m. First of all, we want to test many triples (a, b,m) which increases the
amount of computation involved. Second, and much more significant, when we look for
representations n = p+q with p and q in arithmetic progressions, the minimum value of p,
say, for which such a representation is possible seems to increase much faster than without
placing congruence conditions on p and q. In other words, to rule out almost all potential
exceptions in the first stage of our algorithm above, for the same N we need to take M
larger and larger with m. For instance, when m = 2 (the usual Goldbach conjecture) one
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can always take M < 104 (i.e., the least prime in a Goldbach partition) to rule out all
exceptions for N ≤ 4 · 1018 (see [OeSHP14]), however this is not a sufficiently large value
of M for many of our calculations. Already when N = 106 and M = 104, there are 41
non-exceptions < 106 that we cannot rule out when m = 50, 24981 when m = 100, and
1148651 when m = 148.

3.2. Data and observations. For simplicity of exposition, we define our notation under
the hypothesis: there are no exceptions n > 107 for m ≤ 200. This is believable as the
largest exception we find is approximately 105, and for a given m (with a, b varying)
the gaps between one exception and the next largest exception appear to grow at most
quadratically in the number of total exceptions.

Fix m. Let Emax = Emax(m) and Lavg = Lavg(m) be as in the introduction. Let
Lmin = Lmin(m) (resp. Lmax = Lmax(m)) be the minimum (resp. maximum) of the
lengths |Ea,b,m| over a, b ∈ (Z/mZ)×. Let em (resp. ẽm) denote the number of exceptions
without (resp. with) multiplicity, i.e., the size of the set (resp. multiset)

⋃
(a,b)Ea,b,m,

where a, b run over (Z/mZ)×.
We also consider the above quantities with the additional restriction that b ≡ −a mod

m so as to treat the special case where n is a multiple of m. In this situation, we denote
the analogous quantities with a superscript 0, e.g., E0

max is the maximal n ∈ Ea,b,m such
that n is a multiple of m.

We list the first few explicit calculations of exceptional sets (under our hypothesis):

• E1,1,2 = {2, 4}, which is equivalent to the binary Goldbach conjecture
• E1,1,4 = {2, 6, 14, 38, 62}, E1,3,4 = {4}, and E3,3,4 = {2}
• E1,1,6 = {2, 8}, E1,5,6 = {6}, and E5,5,6 = {4}
• E1,1,8 = {2, 10, 18, 26, 42, 50, 66, 74, 98, 122, 218, 242, 362, 458}, E1,3,8 = {4, 12, 68, 188},
E1,5,8 = {6, 14, 38, 62}, E1,7,8 = {8, 16, 32, 56}, E3,3,8 = E3,5,8 = ∅, E3,7,8 =
E5,5,8 = {2}, E5,7,8 = 4 and E7,7,8 = {6, 22, 166}
• E1,1,10 = {2, 12, 32, 152}, E1,3,10 = E7,7,10 = {4}, E1,7,10 = {8}, E1,9,10 = {10, 20},
E3,3,10 = E3,7,10 = ∅, E3,9,10 = {2, 12}, E7,9,10 = {6, 16}, and E9,9,10 = {8, 18, 28, 68}

We summarize the data from our calculations in Table 1. Note that Emax and E0
max,

as well as the total number of exceptions, tend to be relatively larger when m is a power
of 2 or twice a prime. In these cases φ(m) is relatively large, i.e., we have relatively more
admissible pairs (a, b) to consider, so it makes sense that we pick up more exceptions. We
illustrate this coincidence in the fluctuations of Emax(m) and φ(m) in Fig. 1.

While our numerics are somewhat limited, they suggest that the growth of Emax(m)
appears to be strictly slower than that of m2(logm)2 as stated in Conjecture 1.5, and the
true growth rate appears to be closer to O(m2) or O(m2 logm)—see Fig. 2 for an overlay
of the graphs of Emax(m) (black dots, with the scale on the left) and φ(m) ( gray x’s,
with the scale on the right).

Finally, we observe it often happens that (under our hypothesis), for fixed m, at least
one admissible pair (a, b) has no exceptions, i.e., every n ≡ a + b mod m is of the form
p+ q with p ≡ a mod m and q ≡ b mod m. Both the number of such pairs (a, b) and the
fraction of such pairs out of the total number φ(m)2 of admissible pairs are tabulated in
Table 2. It appears that zm = #{(a, b) ∈ ((Z/mZ)×)2 : Ea,b,m = ∅} tends to grow at
least on average in several of the columns in Table 2 (e.g., when m is a multiple of 5 or
6). This suggests that zm is unbounded, and in particular suggests Conjecture 1.6.
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m L0
min L0

avg L0
max E0

max e0
m ẽ0

m Lmin Lavg Lmax Emax em ẽm
2 2 2.0 2 4 2 2 2 2.0 2 4 2 2
4 1 1.0 1 4 1 2 1 2.0 5 62 6 8
6 1 1.0 1 6 1 2 1 1.25 2 8 4 5
8 0 2.0 4 56 4 8 0 2.875 14 458 28 46

10 0 1.0 2 20 2 4 0 1.563 4 152 13 25
12 0 0.5 1 12 1 2 0 1.0 4 62 9 16
14 0 1.333 3 98 3 8 0 2.056 7 512 32 74
16 0 2.5 4 368 6 20 0 3.469 17 1298 94 222
18 0 0.333 1 18 1 2 0 0.861 2 52 13 31
20 0 1.5 3 200 4 12 0 1.828 8 542 46 117
22 0 2.2 4 418 7 22 0 2.86 9 1568 102 286
24 0 1.0 4 192 4 8 0 1.344 10 458 39 86
26 1 3.0 7 754 11 36 0 3.313 13 4688 146 477
28 1 2.833 7 616 11 34 0 3.063 15 1598 145 441
30 0 0.25 1 30 1 2 0 0.719 3 152 17 46
32 0 3.875 8 1184 15 62 0 4.969 26 5014 316 1272
34 1 3.5 7 1088 14 56 0 4.355 17 5228 289 1115
36 0 0.833 2 216 4 10 0 1.319 5 478 69 190
38 2 3.889 6 1558 16 70 0 4.864 21 5032 373 1576
40 1 2.375 6 920 9 38 0 2.973 19 2282 225 761
42 0 0.333 1 42 1 4 0 0.896 5 512 39 129
44 2 4.0 6 3344 18 80 0 4.42 24 6106 415 1768
46 2 4.273 8 1564 20 94 1 5.285 20 8104 541 2558
48 0 1.0 3 288 5 16 0 1.629 12 1298 132 417
50 0 2.3 4 550 8 46 0 2.893 10 3182 273 1157
52 2 4.333 8 3380 19 104 0 5.035 23 8546 580 2900
54 0 0.889 2 216 4 16 0 1.503 6 1096 130 487
56 1 3.583 6 2072 12 86 0 4.224 24 8318 491 2433
58 3 6.071 13 3422 29 170 0 6.342 31 10366 870 4972
60 0 0.375 2 180 2 6 0 0.855 5 542 66 219
62 3 6.267 10 4712 28 188 0 6.714 28 11416 975 6043
64 2 6.438 12 4736 32 206 0 7.262 35 16126 1173 7436
66 0 0.9 2 198 3 18 0 1.417 6 1568 141 567
68 3 6.0 10 5848 26 192 0 6.387 25 13718 1044 6540
70 0 1.833 3 1540 9 44 0 2.092 9 5002 280 1205
72 0 1.333 4 864 6 32 0 1.922 13 2834 268 1107
74 2 6.611 11 6068 31 238 0 7.355 28 16046 1370 9532
76 3 6.333 11 5624 30 228 0 6.679 29 23426 1250 8656
78 0 1.0 3 624 5 24 0 1.51 7 4688 205 870
80 1 3.813 11 3680 21 122 0 3.982 19 6200 729 4078
82 3 7.2 14 8528 39 288 0 7.764 27 25616 1651 12423
84 0 0.833 4 1008 5 20 0 1.368 11 1598 202 788
86 3 7.714 15 12556 41 324 0 7.942 34 26782 1805 14009
88 2 5.8 13 5720 29 232 0 6.382 32 19274 1378 10211
90 0 0.333 2 180 2 8 0 1.017 5 976 148 586
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m L0
min L0

avg L0
max E0

max e0
m ẽ0

m Lmin Lavg Lmax Emax em ẽm
92 2 7.0 13 7636 36 308 0 7.73 35 21538 1891 14966
94 3 8.0 16 12032 39 368 0 8.43 38 30916 2098 17838
96 0 1.375 3 864 6 44 0 2.194 17 5014 437 2247
98 2 5.286 10 4214 25 222 0 5.503 28 17014 1389 9708

100 0 3.8 6 4300 19 152 0 4.366 21 12134 1043 6986
102 0 1.25 2 918 8 40 0 1.848 11 5228 383 1892
104 3 6.708 13 9256 36 322 0 7.236 36 22886 1990 16671
106 4 8.577 16 11978 48 446 0 9.009 42 39842 2661 24359
108 0 2.0 4 1944 13 72 0 2.279 13 7142 548 2954
110 1 2.85 8 3410 15 114 0 3.331 14 13316 822 5329
112 3 5.667 12 6272 29 272 0 6.11 34 23038 1750 14077
114 0 1.278 3 684 6 46 0 2.064 12 5032 482 2675
116 4 8.714 15 13688 44 488 1 8.961 42 36326 2892 28102
118 4 8.793 17 17228 50 510 0 9.446 45 53614 3144 31776
120 0 0.625 3 360 3 20 0 1.3 12 2282 297 1331
122 4 9.4 18 13298 48 564 0 9.601 43 39818 3377 34563
124 4 8.667 15 12896 49 520 0 9.114 40 42778 3265 32811
126 0 1.056 4 1008 7 38 0 1.535 11 7598 389 1989
128 5 9.25 15 13568 47 592 0 10.406 43 48346 3933 42622
130 1 3.458 8 5590 18 166 0 3.955 19 19406 1242 9112
132 0 1.2 4 1584 9 48 0 1.915 14 6106 540 3064
134 2 9.455 16 14204 52 624 0 10.166 48 52894 3992 44281
136 3 8.219 17 16048 47 526 0 8.813 52 42734 3413 36100
138 0 1.682 3 1656 8 74 0 2.332 11 8104 715 4515
140 0 2.792 6 5180 17 134 0 3.18 17 14198 1077 7327
142 5 9.657 17 23146 55 676 0 10.306 45 54526 4328 50498
144 0 2.167 5 2592 15 104 0 2.771 18 19858 959 6384
146 5 10.222 22 15476 54 736 0 10.663 54 54928 4684 55278
148 2 9.528 17 21608 55 686 0 10.128 43 70222 4374 52501
150 0 0.85 2 1800 7 34 0 1.295 6 3182 387 2072
152 4 8.972 18 17176 54 646 0 9.674 49 62554 4331 50152
154 2 4.6 9 10472 25 276 0 4.954 22 29476 1983 17836
156 0 1.625 4 4212 9 78 0 2.204 16 8546 778 5078
158 6 10.718 21 21488 66 836 1 11.011 47 51248 5245 66991
160 1 5.5 15 13760 32 352 0 5.83 30 31942 2479 23879
162 0 2.148 7 1944 12 116 0 2.826 15 9908 1157 8241
164 5 10.6 20 19352 65 848 0 10.768 52 67546 5438 68912
166 6 10.268 19 22576 64 842 1 11.067 58 65776 5817 74414
168 0 1.583 8 2352 11 76 0 1.849 15 8318 675 4260
170 0 4.313 10 10880 27 276 0 4.765 31 42862 2162 19517
172 4 11.024 18 59168 65 926 0 11.098 47 104494 5771 78306
174 0 2.286 5 7482 16 128 0 2.768 15 10366 1166 8681
176 3 8.5 16 18832 53 680 0 8.926 52 62002 4683 57129
178 5 10.955 18 38092 71 964 1 11.528 50 88622 6344 89275
180 0 0.875 3 1080 5 42 0 1.481 9 7562 560 3412
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m L0
min L0

avg L0
max E0

max e0
m ẽ0

m Lmin Lavg Lmax Emax em ẽm
182 2 5.139 14 14378 33 370 0 5.818 30 33536 2932 30161
184 5 10.023 18 41768 65 882 1 10.665 57 88106 6112 82588
186 0 1.967 5 2232 11 118 0 2.869 18 11784 1285 10329
188 5 10.826 17 34028 70 996 0 11.423 55 82594 6778 96686
190 2 4.639 9 15200 27 334 0 5.052 27 34652 2669 26189
192 0 2.469 4 7296 15 158 0 3.167 20 16126 1552 12972
194 6 11.417 24 33368 75 1096 1 12.054 56 96728 7361 111093
196 2 7.119 15 20776 41 598 0 7.783 39 56738 4514 54914
198 0 1.533 4 4356 9 92 0 2.373 16 13436 1152 8542
200 2 5.6 11 16400 33 448 0 6.228 32 46922 3621 39862

Table 1. Data on exceptional sets mod m for p ≡ a mod m, q ≡ b mod m

0 10 20 30 40 50
0

5

10

15

20

m

φ(m)

0 10 20 30 40 50

0

2,000

4,000

6,000

8,000

E
m

a
x
(m

)

Figure 1. Comparing Emax(m) with φ(m)
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