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Abstract. We propose a new relative trace formula concerning the central

critical values of the spinor L-functions for GSp (4). The main result is a proof
of the fundamental lemma for the unit element of the Hecke algebra. Our new

relative trace formula has some significant advantages over the previous ones

for the subsequent development.

1. Introduction

Investigating special values of automorphic L-functions is a central theme of mod-
ern number theory. In particular, central values are of significant interest because of
their relevance to the Birch & Swinnerton-Dyer conjecture and its generalizations.
In addition to the theta correspondence, the relative trace formula has become a
powerful tool in proving explicit formulas for special values.

In [3, Conjectures 1.8, 1,9], two relative trace formulas, which should ultimately
lead to a proof of Böcherer’s conjecture [1] and its generalization on the central
critical values of the spinor L-functions for GSp (4), were proposed. We refer to
[3, Introduction] for the statement of Böcherer’s conjecture and to [3, Conjectures
1.10, 1,11] for its generalizations, respectively. The main results [3, Theorems 1.13,
1.14] were the fundamental lemma for the unit element of the Hecke algebra for the
regular double cosets for the two conjectural relative trace formulas.

In this manuscript we propose another relative trace formula to tackle the same
problem, which will have several advantages over the previous ones. On one side
of the trace formula, we take the global distribution related to the Bessel periods
of the automorphic forms as in the previous two relative trace formulas. On the
other side we take a new global distribution which is inspired by Novodvorsky’s
integral representation [9] of the L-function for GSp (4)×GL (2) (see also Bump [2,
Section 3.4] for unfolding and Soudry [11] for non-archimedean local theory). The
main result of the current manuscript is a proof of the fundamental lemma for the
unit element for the regular orbital integrals.

This article is organized as follows. In the rest of this section, we introduce the
new global distribution (1.1) and will state the conjectural relative trace formula
(1.3). Then we briefly discuss the special value formula (1.4) which should follow
(1.3) and compare our suggested trace formula to those proposed in [3]. In Section 2,
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the geometric decomposition of the global distribution (1.1) will be computed. In
Section 3, preliminary evaluations of the regular geometric local terms for the unit
element of the Hecke algebra will be performed. In Section 4, the final section,
the regular geometric terms will be explicitly evaluated and the main result of this
article, the fundamental lemma for the unit element of the Hecke algebra for the
regular terms, will be proved as Theorem 1 (the inert case) and Theorem 2 (the
split case).

Now let us explain our conjectural relative trace formula in some detail.

Notation. Let F be a number field and let A be its ring of adeles. Let ψ be a non-
trivial character of A/F . Let E be a quadratic extension of F and let AE be its ring
of adeles. Let κ = κE/F denote the quadratic character of A×/F× corresponding
to the quadratic extension E/F in the sense of class field theory. Let σ denote the
unique non-trivial element in Gal (E/F ) and we take η ∈ E× such that ησ = −η.
Let Ω be a character of A×E/E× and let ω be its restriction to A×/F×. We denote
by Ω′ the character of A×E/E× defined by Ω′ (x) = Ω (xσ).

1.1. Setup.

1.1.1. GSp (4) and its subgroups. Let G be the group GSp (4), an algebraic group
over F defined by

G =
{
g ∈ GL (4) | tgJg = λ (g) J, λ (g) ∈ Gm

}
, where J =

(
0 12

−12 0

)
.

Here tg denotes the transpose of g and λ (g) is called the similitude factor of g.
We consider some subgroups of G. Let

H = {(h1, h2) ∈ GL (2)×GL (2) | deth1 = deth2} .
For h = (h1, h2) ∈ H, let

ι (h1, h2) =


a1 0 b1 0
0 a2 0 b2
c1 0 d1 0
0 c2 0 d2

 where hi =
(
ai bi
ci di

)
.

Then we have ι (h1, h2) ∈ G with λ (ι (h1, h2)) = deth1 = deth2. Thus we regard
H as a subgroup of G by identifying h with ι (h). Let N denote the unipotent
radical of the standard Borel subgroup of G, i.e. N consists of elements of G of the
form

u (x, y, z, w) =


1 x 0 0
0 1 0 0
0 0 1 0
0 0 −x 1




1 0 y z
0 1 z w
0 0 1 0
0 0 0 1

 , x, y, z, w ∈ Ga.

1.1.2. Quaternion similitude unitary groups and subgroups. For each ε ∈ F×, let
Dε denote the quaternion algebra over F defined by

Dε =
{(

a bε
bσ aσ

)
| a, b ∈ E

}
.

We shall identify a ∈ E with
(
a 0
0 aσ

)
∈ Dε. We recall that {Dε}ε gives a set of

representatives for the isomorphism classes of central simple quaternion algebras
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over F containing E when ε runs over a set of representatives for F×/NE/F (E×).
Let Dε 3 α 7→ ᾱ ∈ Dε denote the canonical involution of Dε, i.e.(

a bε
bσ aσ

)
=
(
aσ −bε
−b a

)
.

We define the quaternion similitude unitary group Gε of degree two over Dε to
be

Gε =
{
g ∈ GL (2, Dε) | g∗

(
0 1
1 0

)
g = µ (g)

(
0 1
1 0

)
, µ (g) ∈ Gm

}
where g∗ =

(
ᾱ γ̄
β̄ δ̄

)
for g =

(
α β
γ δ

)
. We recall that the Gε’s are inner forms of

G = GSp (4). When ε = 1, we have D1 ' Mat2×2 (F ) and G = αG1α
−1 in GL4 (E)

where

α =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0




1 1 0 0
η −η 0 0
0 0 1 1
0 0 η −η

 .

We define the upper (resp. lower) Bessel subgroup Rε (resp. R̄ε) of Gε by

Rε =
{(

a 0
0 a

)(
12 X
0 12

)
| a ∈ E×, X ∈ D−ε

}
,

R̄ε =
{(

a 0
0 a

)(
12 0
Y 12

)
| a ∈ E×, Y ∈ D−ε

}
,

where D−ε =
{
X ∈ Dε | X + X̄ = 0

}
.

1.2. The special value side.

1.2.1. Eisenstein series. For Φ in S
(
A2
)
, the space of Schwartz-Bruhat functions

on A2, and s ∈ C, the function

fΦ (g, s) = |det g|s+ 1
2

∫
A×

Φ [(0, t) g]κ−1 (t) |t|2s+1 d×t

satisfies

fΦ

((
a x
0 b

)
g, s

)
=
∣∣∣a
b

∣∣∣s+ 1
2
κ (b) fΦ (g, s) for

(
a x
0 b

)
∈ B2 (A) ,

where B2 denotes the standard Borel subgroup of GL (2). Then the corresponding
Eisenstein series

EΦ (g, s) =
∑

γ∈B2(F )\GL2(F )

fΦ (γg, s)

converges for < (s) > 1
2 and it can be rewritten as

EΦ (g, s) = |det g|s+ 1
2

∫
A×/F×

∑
ξ∈F 2\{(0,0)}

Φ (t ξg)κ−1 (t) |t|2s+1 d×t.

The Fourier transform Φ̂ of Φ ∈ S
(
A2
)

is defined by

Φ̂ (x, y) =
∫

A

∫
A

Φ (u, v) ψ−1 (xu+ yv) du dv
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where the Haar measure on A is normalized so that
∫

A/F dx = 1. By the Poisson
summation formula, EΦ (g, s) extends to an entire function of s and satisfies a
functional equation

EΦ (g, s) = EΦ̂

(
tg−1,−s

)
.

1.2.2. Theta series. Let (V, q) denote the quadratic space of dimension two over F
where V = E and q (x) = NE/F (x). We have

GO (V ) = {h ∈ GL (V ) | q (hx) = ν (h) · q (x) , ∀x ∈ V } = E× o Gal (E/F ) ,

GSO (V ) = {h ∈ GO (V ) | ν (h) = deth} = E×

where E× acts on V by multiplication. Then a character χ of A×E/E× determines
a unique irreducible automorphic representation Π (χ) of GO (V,A). Here we note
that Π (χ) = Π (χ′) where χ′ (x) = χ (xσ). Let

rψ : O (V,A)× SL2 (A)→ Aut (S (V (A)))

denote the Weil representation corresponding to the additive character ψ. Let

G (κ) = {g ∈ GL2 (A) | κ (det g) = 1} , where κ = κE/F ,

and let
R = {(h, g) ∈ GO (V,A)×G (κ) | ν (h) = det g} .

Following Harris and Kudla [4, Section 3], we may extend rψ to a representation
r : R→ Aut (S (V (A))) by

(r (h, g) f) (x) = |ν (h)|−1 · (rψ (g1) f)
(
h−1x

)
where

g1 =
(

1 0
0 det g−1

)
g ∈ SL2 (A) .

For an automorphic form φ ∈ Π (χ), Φ′ ∈ S (V (A)) and g ∈ G (κ), let

θφ (g,Φ′) =
∫

O(V,F )\O(V,A)

θ (τh, g; Φ′) φ (τ) dτ,

where h ∈ GO (V,A) such that ν (h) = det g and

θ (h, g; Φ′) =
∑

x∈V (F )

(r (h, g) Φ′) (x) for (h, g) ∈ R.

Then θφ (·,Φ′) is left GL2 (F )-invariant and we may extend it to the whole of
GL2 (A) by setting it equal to 0 off G (κ). We still denote the extension to GL2 (A)
by θφ (·,Φ′). Let Θ (χ) denote the automorphic representation of GL2 (A) generated
by {θφ (·,Φ′) | φ ∈ Π (χ) ,Φ′ ∈ S (V (A))}.

1.2.3. The global distribution for the special value side. Let f be a smooth function
on G (A) with compact support. Then we form the kernel function Kf by

Kf (x, y) =
∫
Z(F )\Z(A)

∑
γ∈G(F )

f
(
x−1γyz

)
ω (z) dz

where Z denotes the center of G.
For Φ ∈ S

(
A2
)

and θ ∈ Θ
(
Ω−1

)
, we define E : H (A)→ C by

E (ι (h1, h2)) = E (ι (h1, h2) ,Φ, θ) = E∗Φ (h1) θ (h2)
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where
E∗Φ (g) = EΦ (g, 0) .

Here we note that E (zh) = ω−1 (z) E (h) for z ∈ Z (A) and h ∈ H (A) since the
central character of Θ

(
Ω−1

)
is ω−1 · κ. By abuse of notation, let ψ denote the

non-degenerate character of N (A) defined by

ψ




1 x 0 0
0 1 0 0
0 0 1 0
0 0 −x 1




1 0 y z
0 1 z w
0 0 1 0
0 0 0 1


 = ψ (x+ w) .

Then we consider the global distribution defined by

(1.1) I (f) = I (f,Φ, θ) =
∫
Z(A)H(F )\H(A)

∫
N(F )\N(A)

Kf (h, n)E (h)ψ (n) dh dn.

1.3. The period side. Let us define a character τ of Rε (A) and a character ξ of
R̄ε (A), respectively, by

τ

[(
a 0
0 a

)(
12 X
0 12

)]
= Ω (a) · ψ [tr (−ηX)] ,

ξ

[(
a 0
0 a

)(
12 0
Y 12

)]
= Ω′ (a) · ψ

[
tr
(
−η−1Y

)]
.

For a smooth function fε on Gε (A) with compact support, we define a kernel
function Kfε by

Kfε (x, y) =
∫
Zε(F )\Zε(A)

∑
γ∈Gε(F )

fε
(
x−1γyz

)
ω (z) dz

where Zε denotes the center of Gε. Then we define a global distribution Jε by

(1.2) Jε (fε) =
∫
Zε(A)R̄ε(F )\R̄ε(A)

∫
Zε(A)Rε(F )\Rε(A)

Kfε (r̄, r) ξ (r̄)−1
τ (r) dr̄ dr.

1.4. The relative trace formula. We have geometric decompositions for the dis-
tributions I (f,Φ, θ) (see below) and Jε (fε) (by double cosets in the usual way). The
“regular” geometric terms on the special value side are the distributions I (s, a, f)
in (2.5) below. The double coset decomposition for the period side is done in [3],
and on this side the “regular” geometric terms will be

Jε (u, µ, fε) =
∫
Zε(A)\R̄ε(A)

∫
Zε(A)\Rε(A)

∫
Zε(A)

fε (r̄Aε (u, µ) rz) ξ (r̄) τ (r)ω(z)dzdr̄dr

where

Aε (u, µ) =


(

1 εu
uσ 1

)
0

0 µ

(
1 −εu
−uσ 1

)−1


for µ ∈ F× and u ∈ E× such that εuuσ 6= 1. We say that (f,Φ, θ) and {fε}ε match
on the regular terms if

I (s, a, f) = Jε (u, µ, fε)
whenever

s =
1− εuuσ

4µ
, a =

1
1− εuuσ

.
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(Of course, one should also consider matching for the remaining geometric terms.
But we leave the precise definition of them to our future work.)

Then we conjecture the following relative trace formula.

Conjecture. Suppose fε is identically zero for almost all ε. If (f,Φ, θ) and {fε}ε
are matching, then

(1.3) I (f,Φ, θ) =
∑

ε∈F×/NE/F (E×)

Jε (fε) .

Note that both sides of (1.3) converge.
Crucial to this matching is knowing the fundamental lemma at almost all places,

which is a local version of this matching identity (up to a local factor) when fv and
fε,v are unit elements of the appropriate Hecke algebras. This is what we establish
here.

Here let us explain one of the main consequences of the trace formula (1.3). For
an automorphic form φ on Rε (A) satisfying φ (zr) = ω (z)φ (r) for z ∈ Zε (A) and
r ∈ Rε (A), we define the Bessel period Bε,Ω−1 (φ) by

Bε,Ω−1 (φ) =
∫
Zε(A)Rε(F )\Rε(A)

φ (r) τ−1 (r) dr.

Then from (1.3), we expect to obtain a special value formula, roughly of the form,

(1.4)
|W (ϕ)|2

〈ϕ,ϕ〉
· L
(

1
2
, π ⊗Θ

(
Ω−1

))
=
∑

(ε,πε)

|Bε,Ω−1 (ϕε)|2

〈ϕε, ϕε〉
.

Here the notation is as follows. Let π be a globally generic cuspidal representation of
G (A) = GSp4 (A) whose central character is ω. Then W (ϕ) denotes a Whittaker–
Fourier coefficient of a new form ϕ in the space of π and 〈ϕ,ϕ〉 is its Petersson
norm. The L-function L

(
s, π ⊗Θ

(
Ω−1

))
is a twist of the degree four L-function of

π by Θ
(
Ω−1

)
, the representation of GL2 (A) corresponding to Ω−1. We note that

L
(
s, π ⊗Θ

(
Ω−1

))
= L

(
s,BCE/F (π)⊗ Ω−1

)
where BCE/F (π) denotes the base change of π to E. In the summation, (ε, πε) is
a pair where ε ∈ F×/NE/F (E×), πε is a cuspidal automorphic representation of
Gε (A) corresponding to π in the functorial sense, and, ϕε is a test vector in the
space of πε with 〈ϕε, ϕε〉 its Petersson norm.

Furthermore in (1.4), when the left hand side is non-zero, we expect only one
term on the right hand side to be non-zero because of the local conditions controlled
by the ε-factors as in the GL (2) case. We refer the reader to the recent work of
Prasad and Takloo-Bighash [10] concerning the local conditions. We also refer to
[10] for the formulation of the conjectural special value formula in question, in the
spirit of the important paper of Ichino and Ikeda [5], which is a guiding light for
research in this direction.

As we stated in the beginning of the introduction, two conjectural relative trace
formulas concerning the special value in question, which are generalizations to
GSp (4) of the relative trace formulas of Jacquet [6, 7], have been introduced in
[3]. Jacquet has given another proof of Waldspurger [12] based on these relative
trace formulas. Our motivation came from Böcherer’s conjecture [1] on the central
critical values of the quadratic twists of the spinor L-functions for Siegel modular
forms of degree two, as explained in [3, Introduction].
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Our new relative trace formula (1.3) has some significant advantages over the
previous ones. First this works without any restriction on the character Ω of A×E . In
contrast, the first trace formula in [3] works only when Ω is trivial. The second one
in [3] works with arbitrary Ω but it yields a formula involving the quadratic base
change for GSp(4). In order to obtain a special value formula of the form (1.4), it
seems necessary to prove another relative trace formula concerning the quadratic
base change for GSp(4), which establishes a formula, roughly of the form,

|W (ϕ)|2

〈ϕ,ϕ〉
=
WE (ϕE) ·H (ϕE)
〈ϕE , ϕE〉

where ϕE is a test vector in the space of BCE/F (π), WE (ϕE) denotes a Whittaker-
Fourier coefficient of ϕE , and,

H (ϕE) =
∫
Z(A)G(F )\G(A)

ϕE (h) (ωκ) (λ (h)) dh.

This is an interesting problem itself but it surely appears to be another challenging
task. Also, preliminary consideration on the GL(2) case suggests that analytic
issues such as truncation are more tractable. For instance, both sides of (1.3)
already converge. Even at this unrefined stage, this is no longer true for the trace
formulas proposed in [3]. Finally, as we shall see in this manuscript, the orbital
integrals are much simpler to handle compared with the previous ones in [3].

The idea to consider another relative trace formula along the lines of (1.3), whose
special value side comes from the Rankin-Selberg integral involving Eisenstein series
for the L-function in question, was suggested to the first author by Erez Lapid, who
kindly provided his personal note [8] on the analogous relative trace formula for
GL(2). We would like to express our deep gratitude to him for generously sharing
his ideas with us. Thanks are also due to the referee for some useful comments.

2. Decomposition of the global distribution I (f)

2.1. Unfolding. By considering the double coset decomposition

(2.1) H (F ) \G (F ) /Z (F )N (F )

in the definition of the kernel function, we may rewrite (1.1) as

I (f) =
∑

γ∈H(F )\G(F )/Z(F )N(F )

Iγ (f)

where

Iγ (f) =
∫
Z(A)

∫
N(A)

∫
Z(A)H(F )\H(A)∑
h0∈Hγ(F )\H(F )

f
(
h−1h−1

0 γzn
)
ω (z)E (h)ψ (n) dh dn dz

and Hγ = H ∩ γ (ZN) γ−1. Since there is a bijection

Hγ (F ) \H (F ) ≈ Z (A)Hγ (F ) \Z (A)H (F ) ,

we may rewrite Iγ (f) as

Iγ (f) =
∫
Z(A)

∫
N(A)

∫
Z(A)Hγ(F )\H(A)

f
(
h−1γzn

)
ω (z)E (h)ψ (n) dh dn dz.
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Let us denote H ∩ γNγ−1 by Hu
γ . Then because of the bijection

Z (A)Hγ (F ) \Hγ (A) ≈ Hu
γ (F ) \Hu

γ (A) ,

further we have

Iγ (f) =
∫
Z(A)

∫
N(A)

∫
Hγ(A)\H(A)

∫
Huγ (F )\Huγ (A)

f
(
h−1u−1γzn

)
ω (z)E (uh)ψ (n) du dh dn dz.

By a change of variable n 7→
(
γ−1uγ

)
n, we have

(2.2) Iγ (f) =
∫
Z(A)

∫
N(A)

∫
Hγ(A)\H(A)(∫

Huγ (F )\Huγ (A)

ψ
(
γ−1uγ

)
E (uh) du

)
f
(
h−1γzn

)
ω (z)ψ (n) dh dn dz.

Let us compute the double coset decomposition (2.1) explicitly. Let Q denote
the Klingen parabolic subgroup of G, whose Levi decomposition is Q = MQNQ
where

MQ =
{
ι

((
a 0
0 b

)
, h

)
| deth = ab

}
⊂ H, NQ = {u (x, y, z, 0) | x, y, z ∈ Ga} .

The left action of G (F ) on F 4 induces a bijection

G (F ) /Q (F ) ≈ P
(
F 4
)

where P
(
F 4
)

is the projective space. By the H (F )-orbit decomposition in P
(
F 4
)
,

we have
G (F ) = H (F )Q (F ) ∪H (F )w0Q (F ) ∪H (F ) ū1Q (F )

where

w0 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , ū1 =


1 0 0 0
1 1 0 0
0 0 1 −1
0 0 0 1

 .

Lemma 1. (1) We have H (F )Q (F ) = H (F )N (F ).
(2) We have H (F )w0Q (F ) = H (F )w0N (F ).
(3) For a ∈ F×, let

ūa =


1 0 0 0
a 1 0 0
0 0 1 −a
0 0 0 1

 , n̄a =


1 0 0 0
0 a 0 0
0 a 1 0
1 0 0 a−1

 .

Then we have

H (F ) ū1Q (F ) =

( ⋃
r∈F×

H (F ) ūrN (F )

)
∪

( ⋃
s∈F×

H (F ) n̄sN (F )

)
.

Proof. The first case is clear since H (F ) ⊃ MQ (F ). As for the second case, since
w0 normalizes H (F ), we have

H (F )w0Q (F ) = w0H (F )Q (F ) = w0H (F )N (F ) = H (F )w0N (F ) .
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Suppose that H (F ) γ N (F ) ⊂ H (F ) ū1Q (F ). Since

MQ (F ) =
{
ι

((
a 0
0 b

)
,

(
a 0
0 b

))
| a, b ∈ F×

}
n {ι (1, h) | h ∈ SL2 (F )}

and ū1 commutes with ι (( a 0
0 b ) , ( a 0

0 b )), we may assume that γ = ū1 ι (1, h) where
h ∈ SL2 (F ). By the Bruhat decomposition for SL2 (F ), we may assume further
that γ = ū1tr for some r ∈ F× or γ = ū1tsw1 for some s ∈ F×, where

tr =


1 0 0 0
0 r 0 0
0 0 1 0
0 0 0 r−1

 , w1 =


1 0 0 0
0 0 0 1
0 0 1 0
0 −1 0 0

 ,

since ū1 commutes with u (0, 0, 0, w). Then we have ū1tr = trūr−1 where tr ∈ H (F )
and ū1tsw1 = w1n̄s−1 where w1 ∈ H (F ). �

Let us write the integral (2.2) explicitly in each case.

When γ = 1. Then we have Hu
1 = H ∩N and

I1 (f) =
∫
Z(A)

∫
N(A)

∫
H1(A)\H(A)

f
(
h−1zn

)
ω (z)ψ (n)(∫

(F\A)2
ψ (w) E

[
ι

((
1 y
0 1

)
,

(
1 w
0 1

))
h

]
dy dw

)
dh dn dz.

When γ = w0. Then we have Hu
w0

= H ∩ w0Nw
−1
0 = Hu

1 and

Iw0 (f) =
∫
Z(A)

∫
N(A)

∫
H1(A)\H(A)

f
(
h−1w0zn

)
ω (z)ψ (n)(∫

(F\A)2
ψ (y) E

[
ι

((
1 y
0 1

)
,

(
1 w
0 1

))
h

]
dy dw

)
dh dn dz.

We note that Iw0 (f) vanishes when θ is cuspidal.

When γ = ūr. Then we have Hu
ūr = H ∩ ūrNū−1

r = Hu
1 and

Iūr (f) =
∫
Z(A)

∫
N(A)

∫
Hγ(A)\H(A)

f
(
h−1ūrzn

)
ω (z)ψ (n)(∫

(F\A)2
ψ
(
r2y + w

)
E

[
ι

((
1 y
0 1

)
,

(
1 w
0 1

))
h

]
dy dw

)
dh dn dz.

When γ = n̄s. Let H0 = Z Hu
0 where

Hu
0 =

{
ι

((
1 y
0 1

)
,

(
1 0
y 1

))
| y ∈ Ga

}
.

We have H0 = H ∩ n̄sN n̄−1
s for any s ∈ F×. Let us denote Iγ (f) by I (s, f). Then

(2.3) I (s, f) =
∫
Z(A)

∫
N(A)

∫
H0(A)\H(A)

f
(
h−1n̄szn

)
ω (z)ψ (n)(∫

F\A
ψ (sy) E

[
ι

((
1 y
0 1

)
,

(
1 0
y 1

))
h

]
dy

)
dh dn dz.
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Let us utilize the Fourier expansions of E∗Φ and θ. For a ∈ F , let

W (1)
a (h) =

∫
F\A

ψ (ax)E∗Φ

((
1 x
0 1

)
h

)
dx

and

W (2)
a (h) =

∫
F\A

ψ (ax) θ
((

1 0
x 1

)
h

)
dx.

Then we have∫
F\A

ψ (sy) E
[
ι

((
1 y
0 1

)
h1,

(
1 0
y 1

)
h2

)]
dy =

∑
a+b=s

W (1)
a (h1)W (2)

b (h2)

=
∑
a∈F

W (1)
sa (h1)W (2)

s(1−a) (h2) .

Hence we may rewrite (2.3) as I (s, f) =
∑
a∈F I (s, a, f) where

(2.4) I (s, a, f) =
∫
Z(A)

∫
N(A)

∫
H0(A)\H(A)

f
(
h−1n̄szn

)
ω (z)ψ (n)

W (1)
sa (h1)W (2)

s(1−a) (h2) dh dn dz.

We note that I (s, 1, f) vanishes when θ is cuspidal. For a ∈ F×, we have

W (1)
a (h1) = W

(1)
1

((
a 0
0 1

)
h1

)
, W (2)

a (h2) = W
(2)
1

((
1 0
0 a

)
h1

)
.

Hence for a ∈ F \ {0, 1}, we may write (2.4) as

(2.5) I (s, a, f) =
∫
Z(A)

∫
N(A)

∫
H0(A)\H(A)

f
(
h−1n̄szn

)
ω (z)ψ (n)

W
(1)
1

((
sa 0
0 1

)
h1

)
W

(2)
1

((
1 0
0 s (1− a)

)
h2

)
dh dn dz.

3. Evaluation of local orbital integrals

In the rest of the manuscript, we remain in the local situation and we shall use
the following notation.

Notation. Let F be a non-archimedean local field whose residual characteristic is
not equal to two. Let O denote the ring of integers in F and $ be a prime element
of F . Let q denote the cardinality of the residue field O/$O and |·| denote the
normalized absolute value on F , so that |$| = q−1. For a ∈ F×, ord (a) denotes
the order of a. Let ψ be an additive character of F of order zero, i.e. ψ is trivial
on O but not on $−1O.

Let E denote either the unique unramified quadratic extension of F , in the inert
case, or F ⊕ F , in the split case. Let κ = κE/F , i.e. κ is the unique unramified
quadratic character of F× in the inert case and κ is the trivial character of F× in
the split case. Let Ω be an unramified character of E× and let ω = Ω |F× . Then
we may write Ω = δ ◦NE/F where δ is an unramified character of F× and we have
ω = δ2.

For a commutative ring A, M2 (A) denotes the set of two by two matrices with
entries in A. Let Sym2 (A) = {S ∈M2 (A) | tS = S}.
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For an algebraic group G defined over F , we also write G for its group of F -
rational points.

Whittaker function. Let W denote the GL2 (O) fixed vector in the Whittaker
model, with respect to the upper unipotent subgroup, of the unramified princi-
pal series π (1, κ) of GL2 (F ) which is normalized so that W (1) = 1. Thus

W

((
1 x
0 1

)(
ab 0
0 b

)
k

)
= ψ (−x)κ (b)W

(
a 0
0 1

)
for k ∈ GL2 (O). For a ∈ F×, let us simply write W (a) for W

(
a 0
0 1

)
. Then it is

well known that we have

(3.1) W (a) =


|a| 12 , when E is inert and ord (a) ∈ 2Z≥0

|a| 12 (1 + ord (a)) , when E splits and ord (a) ∈ Z≥0,

0, otherwise.

If W ′ denotes the normalized GL2 (O) fixed vector in the Whittaker model of
π
(
δ−1, δ−1 · κ

)
with respect to the lower unipotent subgroup, it is easily seen that

W ′ (g) = δ−1 (det g)W (w2g) where w2 =
(

0 1
1 0

)
.

Kloosterman sum. For r, s ∈ F×, let

K` (r, s) =
∫
O×

ψ
(
rε+ sε−1

)
dε where

∫
O×

dε = 1− q−1.

It is clear from the definition that K` (r, s) = K` (s, r) and

K` (r, s) = K`
(
rξ, sξ−1

)
for ξ ∈ O×.

We also recall the following [3, Proposition 2.7].

Lemma 2. (1) If |r| ≤ 1 and |s| ≤ 1, then K` (r, s) = 1− q−1.
(2) If max {|r|, |s|} > q and |r| 6= |s|, then K` (r, s) = 0.
(3) If |r| = q and |s| ≤ 1, then K` (r, s) = −q−1.

Since the following facts will be used often, we record them here as a corollary.

Corollary 1. (1) When ord (rs) = −1, we have

K` (r, s) =

{
−q−1, when ord (r) = −1 or ord (s) = −1,
0, otherwise.

(2) When ord (rs) ≤ −2, K` (r, s) vanishes unless ord (r) = ord (s).

3.1. Local orbital integral. Let Ξ be the characteristic function of the maximal
compact subgroup K = GSp4 (O) of G. Following (2.5), we define the local orbital
integral I (s, a) for s ∈ F× and a ∈ F \ {0, 1} by

(3.2) I (s, a) =
∫
Z

∫
N

∫
H0\H

Ξ
(
ι (h1, h2)−1

n̄szn
)
ω (z)ψ (n)

δ−1 (s (1− a) deth2)W
((

sa 0
0 1

)
h1

)
W

((
s (1− a) 0

0 1

)
w2h2

)
dh dn dz,
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where we recall that H0 = ZHu
0 ,

Hu
0 =

{
ι

((
1 y
0 1

)
,

(
1 0
y 1

))
| y ∈ F

}
, n̄s =


1 0 0 0
0 s 0 0
0 s 1 0
1 0 0 s−1

 .

When we consider the Iwasawa decompostion H = NHTHKH where KH = H (O),

NH =
{(

1 0 x 0
0 1 0 0
0 0 1 0
0 y 0 1

)
| x, y ∈ F

}
, TH =

{
z′
(
b 0 0 0
0 bc 0 0
0 0 c 0
0 0 0 1

)
| z′, b, c ∈ F×

}
,

a Haar measure on H is given by |c|2 dnH dtH dkH . Thus we may rewrite (3.2) as

I (s, a) =
∫
Z

∫
N

∫
F

∫
(F×)2

Ξ

[
ι

((
b cx
0 c

)
,

(
bc 0
0 1

))−1

n̄szn

]
ω (z)ψ (n)ψ (−sax) δ−1 (s (1− a) bc)κ (b)

W
(
sabc−1

)
W
(
s (1− a) b−1c−1

)
|c|2 d×b d×c dx dn dz.

Here the similitude

λ

[
ι

((
b cx
0 c

)
,

(
bc 0
0 1

))−1

n̄szn

]
= z2b−1c−1 ∈ O×

implies ord (c) = ord
(
z2b−1

)
and we have

I (s, a) = δ−1 (s (1− a))
∫
F×

∫
N

∫
F

∫
F×

ψ (n)ψ (−sax)κ (b) |z2b−1|2

Ξ
[
ι

((
zb−1 −zb−1x

0 z−1b

)
,

(
z−1 0
0 z

))
n̄sn

]
W
(
saz−2b2

)
W
(
s (1− a) z−2

)
d×b dx dn d×z.

By a change of variable b 7→ zb−1, we have

I (s, a) = δ−1 (s (1− a))
∫
F×

∫
N

∫
F

∫
F×

ψ (n)ψ (−sax)κ (zb) |zb|2

Ξ
[
ι

((
b −bx
0 b−1

)
,

(
z−1 0
0 z

))
n̄sn

]
W
(
sab−2

)
W
(
s (1− a) z−2

)
d×b dx dn d×z.

For b, z ∈ F× and x, y ∈ F , let A (b, z, x, y) denote the matrix

ι

((
b −bx
0 b−1

)
,

(
z−1 0
0 z

))
n̄s

( 1 y 0 0
0 1 0 0
0 0 1 0
0 0 −y 1

)
=


b b(y − sx) −bx 0
0 sz−1 0 0
0 b−1s b−1 0
z yz −s−1yz s−1z


and let U denote the unipotent radical of the upper Siegel pabrabolic subgroup of
G, i.e.

U =
{(

12 S
0 12

)
| S ∈ Sym2 (F )

}
.
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Then we have

(3.3) I (s, a) = δ−1 (s (1− a))
∫
F×

∫
F

∫
U

∫
F

∫
F×

ψ (u)ψ (y − sax)κ (zb) |zb|2

Ξ [A (b, z, x, y)u]W
(
sab−2

)
W
(
s (1− a) z−2

)
d×b dx dy du d×z.

Let us examine the support of the integral (3.3).

Lemma 3. For the matrix A (b, z, x, y), we have

(3.4) A (b, z, x, y) u ∈ K for some u ∈ U

if and only if

max {|b|, |z|} = 1,(3.5)

max
{
|b(y − sx)|, |sz−1|, |b−1s|, |yz|

}
≤ 1,(3.6)

max
{
|bsz−1|, |sbxz|, |b−1sz|

}
= 1.(3.7)

Proof. By Lemma 4.9 in [3], the condition (3.4) is equivalent to (3.5), (3.6) and

(3.8) max
{
|bsz−1|, |s|, |sbxz|, |b−1sz|

}
= 1.

Here we note that |s|2 = |bsz−1| · |b−1sz| and then (3.7) is clearly equivalent to
(3.8). �

We record here as a separate lemma the following consequence of the observation
in the proof of Lemma 3.

Lemma 4. The local orbital integral I (s, a) vanishes unless |s| ≤ 1.

3.2. Evaluation of I (s, a) when |s| = 1.

Proposition 1. When |s| = 1, we have

(3.9) I (s, a) = δ−1 (1− a) W (a) W (1− a) .

In particular I (s, a) vanishes unless ord (a) ≥ 0.

Proof. When |s| = 1, the condition (3.7) is equivalent to

max
{
|bz−1|, |bxz|, |bz−1|−1

}
= 1.

Hence we have |bz−1| = 1. Thus the condition (3.4) is equivalent to |b| = |z| = 1,
|x| ≤ 1, |y| ≤ 1 and then we have A (b, z, x, y) ∈ K. Hence A (b, z, x, y)u ∈ K if
and only if u ∈ U ∩K. Thus we have

I (s, a) = δ−1 (1− a) W (a) W (1− a)
∫
O
ψ (−sax) dx

where W (a) vanishes unless |a| ≤ 1. Hence the equality (3.9) holds. �

3.3. Evaluation of I (s, a) when |s| < 1. First we put

ord (s) = h, ord (1− a) = k, ord (a) = k′.

By the condition (3.5), the integral I (s, a) becomes a sum of three integrals
Ij (s, a) (j = 0, 1, 2), supported on

|b| = |z| = 1; |b| = 1 > |z|; |b| < |z| = 1,

respectively.
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3.3.1. Evaluation of I0 (s, a). When |b| = |z| = 1, we may assume that b = z = 1.
For A (1, 1, x, y), the condition (3.4) holds if and only if |x| = |s|−1 and |y| ≤ 1.
Then 

1 0 0 0
0 0 0 1
0 0 1 0
0 −1 0 0

A (1, 1, x, y) =


1 y − sx −x 0
1 y −s−1y s−1

0 s 1 0
0 −s 0 0


where

(
1 y − sx
1 y

)
∈ GL2 (O). Hence for S ∈ Sym2 (F ), we have

A (1, 1, x, y)
(

12 S
0 12

)
∈ K

if and only if

(3.10)
(

1 y − sx
1 y

)
S +

(
−x 0
−s−1y s−1

)
∈M2 (O)

and

(3.11)
(

0 s
0 −s

)
S +

(
1 0
0 0

)
∈M2 (O) .

The condition (3.10) is equivalent to

S ∈
(

2s−1y − s−2x−1y2 −s−1 + s−2x−1y
−s−1 + s−2x−1y −s−2x−1

)
+ Sym2 (O)

and this implies (3.11). Hence

I0 (s, a) = δ−1 (s (1− a))W (sa)W (s (1− a))
∫
s−1O×

ψ
(
−sax− s−2x−1

)
dx.

Thus

(3.12) I0 (s, a) = δ−1 (s (1− a))W (sa)W (s (1− a)) |s|−1K`
(
a, s−1

)
.

Here we note that

(3.13) δ−1 (a) I0 (s, a) = δ−1 (1− a) I0 (−s, 1− a)

since
K`
(
1− a,−s−1

)
= K`

(
−a,−s−1

)
= K`

(
a, s−1

)
.

Proposition 2. (1) The integral I0 (s, a) vanishes unless k = −h, or, h = 1
and k ≥ 0.

(2) When k = −h, we have

I0 (s, a) = qhK`
(
a, s−1

)
.

(3) When h = 1 and k ≥ 0, we have

I0 (s, a) = −δ ($)−k−1
W
(
$1+k′

)
W
(
$1+k

)
.

Proof. In (3.12), W (s (1− a)) vanishes unless h+k ≥ 0. When h > 1 and h+k ≥ 1,
K`
(
a, s−1

)
vanishes by Lemma 2. The rest is clear from (3.12). �
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3.3.2. Evaluation of I1 (s, a). When |b| = 1 and |z| < 1, we may assume that b = 1.
Then, for A (1, z, x, y), the condition (3.4) is equivalent to

max
{
|sz−1|, |sxz|

}
= 1, |y − sx| ≤ 1,

since yz = z (y − sx) + sxz. Splitting the first condition into two separate cases

|sz−1| = 1 ≥ |sxz| or |sz−1| < 1 = |sxz|,

we may write I1 (s, a) = I1,1 (s, a) + I1,2 (s, a). Here

(3.14) I1,1 (s, a) = δ−1 (s (1− a))W (sa)W
(
s−1 (1− a)

)
κ (s) |s|2∫

y∈O

∫
U

∫
x∈s−2O

Ξ [A (1, s, x, y + sx)u]ψ (u)ψ (s (1− a)x) dx du dy.

As for I1,2 (s, a), further splitting into separate cases according to ord (z), we have
I1,2 (s, a) =

∑h−1
j=1 I

(j)
1,2 (s, a) where

(3.15) I
(j)
1,2 (s, a) = δ−1 (s (1− a))W (sa)W

(
s (1− a)$−2j

)
κ ($)j q−2j∫

y∈O

∫
U

∫
x∈s−1$−jO×

Ξ
[
A
(
1, $j , x, y + sx

)
u
]
ψ (u)ψ (s (1− a)x) dx du dy.

In (3.14), for S ∈ Sym2 (F ), we have

A (1, s, x, y + sx)
(

12 S
0 12

)
=


1 y −x 0
0 1 0 0
0 s 1 0
s s (y + sx) −y − sx 1

(12 S
0 12

)
∈ K

if and only if S ∈
(
x 0
0 0

)
+ Sym2 (O) since

(
1 y
0 1

)
∈ GL2 (O). Hence

I1,1 (s, a) = δ−1 (s (1− a))W (sa)W
(
s−1 (1− a)

)
κ (s)

∫
O
ψ
(
s−1 (1− a)x

)
dx.

Since W
(
s−1 (1− a)

)
vanishes unless |s−1 (1− a)| ≤ 1, we have

(3.16) I1,1 (s, a) = δ−1 (s (1− a))W (sa)W
(
s−1 (1− a)

)
κ (s) .

In (3.15), we have
1 0 0 0
0 0 0 1
0 0 1 0
0 −1 0 0

A
(
1, $j , x, y + sx

)

=


1 y −x 0
$j $j (y + sx) −s−1$j (y + sx) s−1$j

0 s 1 0
0 −s$−j 0 0


where

(
1 y
$j $j (y + sx)

)
∈ GL2 (O). Hence for S ∈ Sym2 (F ), we have

A
(
1, $j , x, y + sx

)(12 S
0 12

)
∈ K
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if and only if

(3.17)
(

1 y
$j $j (y + sx)

)
S +

(
−x 0

−s−1$j (y + sx) s−1$j

)
∈M2 (O)

and

(3.18)
(

0 s
0 −s$−j

)
S +

(
1 0
0 0

)
∈M2 (O) .

The condition (3.17) is equivalent to

S ∈ − 1
$jsx

(
s−1$j (y + sx) (y − sx) −s−1$jy

−s−1$jy s−1$j

)
+ Sym2 (O)

and this implies (3.18). Hence

(3.19) I
(j)
1,2 (s, a) = δ−1 (s (1− a))W (sa)W

(
s (1− a)$−2j

)
κ ($)j |s|−1q−j

K`
(
$−j (1− a) ,−s−1$j

)
.

Thus we have

(3.20) I1 (s, a) = δ−1 (s (1− a))W (sa)W
(
s−1 (1− a)

)
κ (s)

+ δ−1 (s (1− a))W (sa) |s|−1

h−1∑
j=1

W
(
s (1− a)$−2j

)
κ ($)j q−j K`

(
$−j (1− a) ,−s−1$j

)
.

Proposition 3. (1) The integral I1 (s, a) vanishes unless h+ k ≥ 2.
(2) When h = 1, we have

I1 (s, a) =

{
δ ($)−k−1

W ($)W
(
$k−1

)
κ ($) , when k ≥ 1,

0, otherwise.

(3) Suppose that h ≥ 2.
(a) When −h+ 2 ≤ k ≤ h− 2 and h ≡ k (mod 2), we have

I1 (s, a) = δ ($)−h−kW
(
$h+k′

)
κ ($)

h+k
2 q

h−k
2 K`

(
$−

h+k
2 (1− a) ,−s−1$

h+k
2

)
.

(b) When k = h− 1, we have

I1 (s, a) = −δ ($)−2h+1
W
(
$h
)
W ($)κ ($)h−1

.

(c) When k ≥ h, we have

I1 (s, a) = δ ($)−h−kW
(
$h
)
κ ($)h

{
W
(
$k−h)− κ ($)W

(
$k−h+2

)}
.

(d) The integral I1 (s, a) vanishes otherwise.

Proof. From (3.16), I1,1 (s, a) vanishes unless −h + k ≥ 0. Similarly from (3.19),
I

(j)
1,2 (s, a) vanishes unless h+ k − 2j ≥ 0. Hence I1 (s, a) vanishes unless h+ k ≥ 2.

When k ≥ h > 0, we have k′ = 0. Hence

(3.21) I1,1 (s, a) =

{
δ ($)−h−kW

(
$h
)
W
(
$k−h)κ ($)h , when k ≥ h,

0, otherwise.

When h = 1, it is clear from (3.21) that I1 (s, a) is given as above.
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Suppose that h ≥ 2. If I(j)
1,2 (s, a) 6= 0, then we have h + k − 2j ≥ 0 since

W
(
s (1− a)$−2j

)
6= 0. Hence −j + k ≥ −h + j and by Lemma 2, I(j)

1,2 (s, a)
vanishes unless

(3.22) j = h− 1, −(h− 1) + k ≥ −1

or

(3.23) 1 ≤ j ≤ h− 2, −j + k = −h+ j.

The former case (3.22) occurs when k ≥ h− 2 and then

(3.24) I
(h−1)
1,2 (s, a) = δ ($)−h−kW

(
$h+k′

)
W
(
$k−h+2

)
κ ($)h−1

q K`
(
$1−h (1− a) ,−s−1$h−1

)
.

The latter case (3.23) occurs when h ≡ k (mod 2) and 2− h ≤ k ≤ h− 4. Then

(3.25) I
(h+k

2 )
1,2 (s, a)

= δ ($)−h−kW
(
$h+k′

)
κ ($)

h+k
2 q

h−k
2 K`

(
$−

h+k
2 (1− a) ,−s−1$

h+k
2

)
.

Now the assertion follows from (3.21), (3.24) and (3.25). �

3.3.3. Evaluation of I2 (s, a). When |b| < 1 and |z| = 1, we may assume that z = 1
and then for A (b, 1, x, y) the condition (3.4) holds if and only if

max
{
|sbx|, |sb−1|

}
= 1, |y| ≤ 1.

Dividing the first condition into two separate cases according to

|sb−1| = 1 ≥ |sbx| or |sb−1| < 1 = |sbx|,

we write I2 (s, a) = I2,1 (s, a) + I2,2 (s, a) where

(3.26) I2,1 (s, a) = δ−1 (s (1− a))W
(
s−1a

)
W (s (1− a))κ (s) |s|2∫

y∈O

∫
U

∫
x∈s−2O

Ξ [A (s, 1, x, y)u]ψ (u)ψ (−sax) dx du dy,

I2,2 (s, a) =
∑h−1
j=1 I

(j)
2,2 (s, a), and,

(3.27) I
(j)
2,2 (s, a) = δ−1 (s (1− a))W

(
sa$−2j

)
W (s (1− a))κ ($)j q−2j∫

y∈O

∫
U

∫
x∈s−1$−jO×

Ξ
[
A
(
$j , 1, x, y

)
u
]
ψ (u)ψ (−sax) dx du dy.

In (3.26), for S ∈ Sym2 (F ), we have

A (s, 1, x, y)
(

12 S
0 12

)
=


s s (y − sx) −sx 0
0 s 0 0
0 1 s−1 0
1 y −s−1y s−1

(12 S
0 12

)
∈ K

if and only if

(3.28)
(
s s (y − sx)
0 s

)
S +

(
−sx 0

0 0

)
∈M2 (O)
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and

(3.29)
(

0 1
1 y

)
S +

(
s−1 0
−s−1y s−1

)
∈M2 (O) .

Since
(

0 1
1 y

)
∈ GL2 (O), the condition (3.29) is equivalent to

(3.30) S ∈
(

2s−1y −s−1

−s−1 0

)
+ Sym2 (O)

and (3.30) implies (3.28). Hence

I2,1 (s, a) = δ−1 (s (1− a))W
(
s−1a

)
W (s (1− a))κ (s)

∫
O
ψ
(
−s−1ax

)
dx.

Since W
(
s−1a

)
vanishes unless |s−1a| ≤ 1, we have

I2,1 (s, a) = δ−1 (s (1− a))W
(
s−1a

)
W (s (1− a))κ (s) .

In (3.27), we have
1 0 0 0
0 0 0 1
0 0 1 0
0 −1 0 0

A
(
$j , 1, x, y

)
=


$j $j (y − sx) −$jx 0
1 y −s−1y s−1

0 s$−j $−j 0
0 −s 0 0


where

(
$j $j (y − sx)
1 y

)
∈ GL2 (O). Hence for S ∈ Sym2 (F ), we have

A
(
$j , 1, x, y

)(12 S
0 12

)
∈ K

if and only if

(3.31)
(
$j $j (y − sx)
1 y

)
S +

(
−$jx 0
−s−1y s−1

)
∈M2 (O)

and

(3.32)
(

0 s$−j

0 −s

)
S +

(
$−j 0

0 0

)
∈M2 (O) .

The condition (3.31) is equivalent to

S ∈ − 1
$jsx

(
s−1$jy (y − 2sx) −s−1$j (y − sx)
−s−1$j (y − sx) s−1$j

)
+ Sym2 (O)

and this implies (3.32). Hence

I
(j)
2,2 (s, a) = δ−1 (s (1− a))W

(
sa$−2j

)
W (s (1− a))κ ($)j |s|−1q−j

K`
(
$−ja, s−1$j

)
.

Thus we have

(3.33) I2 (s, a) = δ−1 (s (1− a))W
(
s−1a

)
W (s (1− a))κ (s) +

δ−1 (s (1− a))W (s (1− a)) |s|−1
h−1∑
j=1

W
(
sa$−2j

)
κ ($)j q−j K`

(
$−ja, s−1$j

)
.
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By comparing (3.33) with (3.20), we have

(3.34) I2 (s, a) = δ−1 (1− a) δ (a) I1 (−s, 1− a) .

Thus I2 (s, a) is explicitly evaluated as follows by Proposition 3.

Proposition 4. (1) The integral I2 (s, a) vanishes unless h+ k′ ≥ 2.
(2) When h = 1, we have

I2 (s, a) =

{
δ ($)−1

W ($)W
(
$k′−1

)
κ ($) , when k′ ≥ 1,

0, otherwise.

(3) Suppose that h ≥ 2.
(a) When −h+ 2 ≤ k′ ≤ h− 2 and h ≡ k′ (mod 2), we have

I2 (s, a) = δ ($)−h−kW
(
$h+k

)
κ ($)

h+k′
2 q

h−k′
2 K`

(
$−

h+k′
2 a, s−1$

h+k′
2

)
.

(b) When k′ = h− 1, we have

I2 (s, a) = −δ ($)−hW
(
$h
)
W ($)κ ($)h−1

.

(c) When k′ ≥ h, we have

I2 (s, a) = δ ($)−hW
(
$h
)
κ ($)h

{
W
(
$k′−h

)
− κ ($)W

(
$k′−h+2

)}
.

(d) The integral I2 (s, a) vanishes otherwise.

Here we also note the following functional equation for I (s, a).

Proposition 5 (Functional Equation). For s ∈ F× and a ∈ F \{0, 1}, the function
δ−1 (a) · I (s, a) is invariant under the transformation (s, a) 7→ (−s, 1− a), i.e.

(3.35) δ−1 (1− a) · I (−s, 1− a) = δ−1 (a) · I (s, a) .

Proof. When |s| = 1, (3.35) is clear from (3.9). When |s| < 1, (3.35) follows from
(3.13) and (3.34), since I (s, a) =

∑2
i=0 Ii (s, a). �

4. Matching

Let us introduce a new set of parameters for the matching. We note that there
is a bijection

(F \ {0, 1})× F× 3 (x, µ) ≈−→
(
−1− x

4µ
,

1
1− x

)
∈ F× × (F \ {0, 1})

whose inverse is given by

(s, a) 7→
(
−1− a

a
,− 1

4sa

)
.

For x ∈ F \ {0, 1} and µ ∈ F×, let us define I (x, µ) by

I (x, µ) = I (s, a) where s = −1− x
4µ

, a =
1

1− x
.

Throughout this section we use the following two set of parameters.
m = ord (x)
m′ = ord (1− x)
n = −ord (µ)


h = ord (s)
k = ord (1− a)
k′ = ord (a)
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The dictionary between the two sets is given as follows.
m = k − k′

m′ = −k′

n = h+ k′


h = m′ + n

k = m−m′

k′ = −m′

In terms of the the new parameters, the functional equation (3.35) becomes

(4.1) I
(
x−1, µx−1

)
= δ (x) · I (x, µ) .

First we note the following vanishing condition.

Lemma 5. Then integral I (x, µ) vanishes unless

(4.2) ord (µ) ≤ min {0, ord (x)} .
Furthermore when E/F is inert, I (x, µ) vanishes unless ord (x) and ord (µ) are

both even.

Proof. It is clear from (3.9),(3.12), (3.20) and (3.33) that I (x, µ) vanishes unless
W (sa) 6= 0 or W (s (1− a)) 6= 0. Hence I (x, µ) vanishes unless ord (sa) = n ≥ 0
or ord (s (1− a)) = m+ n ≥ 0, i.e. the condition (4.2) holds.

When E/F is inert, W (b) vanishes unless ord (b) is even. It is clear from
(3.9),(3.12),(3.20) and (3.33) that every term contributing to I (s, a) has a product
of the form W

(
sau2

)
W
(
s (1− a) v2

)
, for some u, v ∈ F×, as a factor. Hence

I (x, µ) vanishes unless ord (sa) and ord (s (1− a)) are both even. �

4.1. Matching when E/F is inert. In this case, the Bessel orbital integral de-
fined as follows is the local orbital integral to be compared with I (x, µ).

Let η ∈ E such that η2 ∈ O× and E = F (η). Then for u ∈ E× such that
uuσ 6= 1 and µ ∈ F×, the Bessel orbital integral B (u, µ) is defined by

B (u, µ) =
∫
R̄1/Z1

∫
R1

Ξ1

[
r̄

(
Au 0
0 µ · Ā−1

u

)
r

]
ξ (r̄) τ (r) dr̄ dr

where Ξ1 denotes the characteristic function of G1 ∩ GL4 (OE), OE is the integer

ring of E, and Au =
(

1 u
uσ 1

)
. We note that this is Ω−1 (u) times the Bessel orbital

integral considered in [3]. We may restate Theorem 5.11 of [3] as follows.

Proposition 6. Let µ ∈ F× and u ∈ E× such that uuσ 6= 1. Let x = uuσ.
(1) The Bessel orbital integral B (u, µ) vanishes unless ord (µ) is even and

ord (µ) ≤ min {0, ord (x)} .
(2) We have the functional equation

(4.3) B
(
u−1, µx−1

)
= δ (x) · B (u, µ) .

(3) Suppose that µ ∈ O×.
(a) When |1− x| = 1, we have

B (u, µ) = 1.

(b) When |1− x| < 1, we have

B (u, µ) = |1− x|−1 · K`
(

2 (1− x)−1
,−2µ (1− x)−1

)
.

(4) Suppose that n = −ord (µ) > 0, m = ord (x) ≥ 0 and n is even.
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(a) When m ≥ n, we have

B (u, µ) = δ ($)n qn
{

(−1)
n
2 · K`

(
2$−

n
2 ,−2$

n
2 µ
)

+ 1 + q−1
}
.

(b) When 0 ≤ m < n, we have

B (u, µ) = δ ($)n |1− x|−1qn (−1)
n
2{

K`
(

2$−
n
2

1− x
,
−2$

n
2 µ

1− x

)
+ (−1)

m
2 · K`

(
2$

m−n
2

1− x
,
−2$

n−m
2 µx

1− x

)}
.

Note that in the statement of [3, Theorem 5.11] the factor of qn is missing in
Case (4)(b).

Theorem 1 (Matching when E/F is inert). For x ∈ F \{0, 1} and µ ∈ F×, I (x, µ)
vanishes unless ord (x) is even. When x = uuσ for u ∈ E×, we have

(4.4) I (x, µ) = δ−1

(
x

µ2

) ∣∣∣∣ xµ2

∣∣∣∣ 12 B (u, µ) .

Proof. By Lemma 5, the vanishing conditions for I (x, µ) and B (u, µ) match. Also
the functional equations (4.1) and (4.3) are compatible with the matching (4.4).
Hence it is enough for us to show (4.4) when

m = ord (x) ≥ 0, n = −ord (µ) ≥ 0 and m,n are both even.

Here we note that then we also have m′ = ord (1− x) ≥ 0.

When m′ = n = 0. Then h = k′ = 0 and k = m. Hence by (3.9) we have

I (x, µ) = δ ($)−m q−
m
2 .

When m′ > 0 and n = 0. Then m = 0 and k = k′ = −h = −m′. Hence we have
h+ k = h+ k′ = 0 and both I1 (s, a) and I2 (s, a) vanish. Thus by (3.12),

I (x, µ) = qm
′
K`
(

2 (1− x)−1
,−2µ (1− x)−1

)
.

When m′ = 0 and n > 0. Then we have h = n ≥ 2, k = m and k′ = 0. Hence
I0 (s, a) vanishes since K`

(
a, s−1

)
= 0. By Proposition 3 and Proposition 4,

I1 (s, a) = δ ($)−m−n q−
m
2

·

{
(−1)n

(
1 + q−1

)
, when m ≥ n,

(−1)
m+n

2 K`
(
$−

m+n
2 (1− a) ,−s−1$

m+n
2

)
, when m < n

and
I2 (s, a) = δ ($)−m−n q−

m
2 (−1)

n
2 K`

(
$−

n
2 a, s−1$

n
2
)
.

Hence

I (x, µ) = δ ($)−m−n q−
m
2 (−1)

n
2

·


{
K`
(
2$−

n
2 ,−2$

n
2 µ
)

+ (−1)
n
2
(
1 + q−1

)}
, when m ≥ n,{

K`
(

2$−
n
2

1−x , −2$
n
2 µ

1−x

)
+ (−1)

m
2 K`

(
2$

m−n
2

1−x , −2$
n−m

2 µx
1−x

)}
, when m < n.
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When m′ > 0 and n > 0. Then m = 0 and h = m′ + n ≥ 3, k = k′ = −m′. Hence
I0 (s, a) vanishes since K`

(
a, s−1

)
= 0. By Proposition 3 and Proposition 4,

I1 (s, a) = δ ($)−n qm
′
(−1)

n
2 K`

(
$−

n
2 (1− a) ,−s−1$

n
2
)

and
I2 (s, a) = δ ($)−n qm

′
(−1)

n
2 K`

(
$−

n
2 a, s−1$

n
2
)
.

Hence

I (x, µ) = δ ($)−n qm
′
(−1)

n
2

·
{
K`
(

2$−
n
2

1− x
,
−2$

n
2 µx

1− x

)
+K`

(
2$−

n
2

1− x
,
−2$

n
2 µ

1− x

)}
.

By comparing with Proposition 6, we have

I (x, µ) = δ ($)−m−2n
q−

m
2 −nB (u, µ)

in every case, i.e. the equality (4.4) holds. �

4.2. Matching when E/F is split. In this case, the Novodvorsky orbital integral
defined as follows is the local orbital integral to be compared with I (x, µ).

For x ∈ F \ {0, 1} and µ ∈ F×, let

(4.5) N (x, µ) =
∫

(F×)3

∫
U

∫
Ū

Ξ
[(

12 0
Y 12

)(
a 0 0 0
0 1 0 0
0 0 1 0
0 0 0 a

)(
hx 0
0 µ · th−1

x

)(
b 0 0 0
0 c 0 0
0 0 c 0
0 0 0 b

)(
12 X
0 12

)]
δ (abc)ψ

[
tr
{(

0 1
1 0

)
(X + Y )

}]
d×a d×b d×c dX dY

where hx =
(

1 x
1 1

)
. The difference between (4.5) and the Novodvorsky integral

considered in [3, (4.20)] is the characters on the diagonal torus.
Let us evaluate N (x, µ). First we note the following lemma which is proved by

an argument identical to the one given in [3, Section 4.3].

Lemma 6. (1) We have the functional equation

(4.6) N
(
x−1, µx−1

)
= δ (x)N (x, µ) .

(2) The integral N (x, µ) vanishes unless

ord (µ) ≤ min {0, ord (x)} .

Thus it is enough for us to evaluate N (x, µ) when |µ| ≥ 1 and |x| ≤ 1.

Lemma 7. Suppose that m = ord (x) ≥ 0 and n = −ord (µ) ≥ 0. Put m′ =
ord (1− x).

(1) When n = 0, we have

N (x, µ) =

{
1 +m, when m′ = 0,

qm
′ K`

(
2 (1− x)−1

,−2µ (1− x)−1
)
, when m′ > 0.
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(2) When n > 0, we have

(4.7) N (x, µ) = N0 (x, µ) +N1 (x, µ) +N2 (x, µ)

where

N0 (x, µ) =

{
−4δ ($) , when n = 1 and m′ = 0,
0, otherwise,

N1 (x, µ) = δ ($)n qm
′+n (n+ 1)

m+n−1∑
i=1

K`
(

2$−ix
1− x

,
−2$iµ

1− x

)
and

N2 (x, µ) = δ ($)n qm
′+n (m+ n+ 1)

n−1∑
j=1

K`
(

2$−j

1− x
,
−2$jµ

1− x

)
.

Proof. As in [3, Section 4.3], we have

N (x, µ) = δ (µ)−1
∑

0≤i≤m+n
0≤j≤n

I
(
x, µ,$n−i−j , $i, $j

)
where

I (x, µ, a, b, c) =
∫
U

∫
Ū

ψ

[
tr
{(

0 1
1 0

)
(X + Y )

}]
Ξ
[(

12 0
Y 12

)(
a 0 0 0
0 1 0 0
0 0 1 0
0 0 0 a

)(
hx 0
0 µ · th−1

x

)(
b 0 0 0
0 c 0 0
0 0 c 0
0 0 0 b

)(
12 X
0 12

)]
dX dY.

When n = 0. Then

N (x, µ) =
∑

0≤i≤m

I
(
x, µ,$−i, $i, 1

)
.

If m′ = 0, then we have I
(
x, µ,$−i, $i, 1

)
= 1 (0 ≤ i ≤ m) as computed in [3,

p.97] and we have N (x, µ) = 1 +m. If m′ > 0, then we have m = 0 and

N (x, µ) = qm
′
K`
(

2 (1− x)−1
,−2µ (1− x)−1

)
as computed in [3, Proposition 4.15].

When n > 0. Let us write Ii,j for I
(
x, µ,$n−i−j , $i, $j

)
. Thus

(4.8) N (x, µ) = δ ($)n
∑

0≤i≤m+n
0≤j≤n

Ii,j .

In (4.8), let us call Ii,j an interior term when 0 < i < m+ n and 0 < j < n and let
us call Ii,j a boundary term otherwise.

For the boundary terms, by [3, Proposition 4.15], we have

Ii,0 = Ii,n = qm
′+nK`

(
2$−ix
1− x

,
−2$iµ

1− x

)
and

I0,j = Im+n,j = qm
′+nK`

(
2$−j

1− x
,
−2$jµ

1− x

)
.
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As for the interior terms, by [3, Proposition 4.17], we have

Ii,j = qm
′+n

{
K`
(

2$−j

1− x
,
−2$jx

1− x

)
+K`

(
2$−ix
1− x

,
−2$iµ

1− x

)}
.

Thus we have

N (x, µ) = N1 (x, µ) +N2 (x, µ) + δ (µ)−1 (I0,0 + I0,n + Im+n,0 + Im+n,n)

where

I0,0 + I0,n + Im+n,0 + Im+n,n

= 2qm
′+n

{
K`
(

2x
1− x

,
−2µ
1− x

)
+K`

(
2$−n

1− x
,
−2$nµ

1− x

)}
.

Since

ord
(

2x
1− x

)
= m−m′, ord

(
−2µ
1− x

)
= −n−m′ < 0

and they can never be equal, we have

K`
(

2x
1− x

,
−2µ
1− x

)
=

{
−q−1, when n = 1 and m′ = 0,
0, otherwise.

Similarly we have

K`
(

2$−n

1− x
,
−2$nµ

1− x

)
=

{
−q−1, when n = 1 and m′ = 0,
0, otherwise.

Thus we have (4.7). �

Theorem 2 (Matching when E/F is split). For x ∈ F \ {0, 1} and µ ∈ F×, we
have

(4.9) I (x, µ) = δ−1

(
x

µ2

) ∣∣∣∣ xµ2

∣∣∣∣ 12 N (x, µ) .

Proof. As in the case when E/F is inert, it is enough for us to show (4.9) when
m ≥ 0 and n ≥ 0.

When n = 0. If m′ = 0, by (3.9), we have

I (x, µ) = δ ($)−m q−
m
2 (m+ 1) .

If m′ > 0, then m = 0 and k = k′ = −h. Hence both I1 (s, a) and I2 (s, a) vanish
and by (3.12) we have

I (x, µ) = qm
′
K`
(

2 (1− x)−1
,−2µ (1− x)−1

)
.
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When n = 1. Then we have N (x, µ) = N0 (x, µ)+N1 (x, µ). If m′ > 0, then m = 0
and we have N0 (x, µ) = N1 (x, µ) = 0. When m′ = 0, we have

N (x, µ) = −4δ ($) + 2δ ($) q
m∑
i=1

K`
(

2$−ix
1− x

,
−2$iµ

1− x

)
.

Here the arguments in the Kloosterman sums are all integers when m > 0. Thus
when n = 1, we have

N (x, µ) =


2δ ($) q

{
m− (m+ 2) q−1

}
, when m ≥ 1,

−4δ ($) , when m = m′ = 0,
0, otherwise.

Let us compute I (x, µ). If m′ > 0, then m = 0 and I1 (s, a) = I2 (s, a) = 0
since h + k = h + k′ = 1. We also have I0 (s, a) = 0 since −h < k′ < 0 and hence
K`
(
a, s−1

)
= 0. Suppose that m′ = 0. Then we have I2 (s, a) = 0 since h+ k′ = 1,

I0 (s, a) = −2 (m+ 2) δ ($)−m−1
q−

m+2
2

and

I1 (s, a) =

{
2mδ ($)−m−1

q−
m
2 , when m ≥ 1,

0, when m = 0.
Hence when n = 1, we have

I (x, µ) =


2δ ($)−m−1

q−
m
2
{
m− (m+ 2) q−1

}
, when m ≥ 1,

−4δ ($)−1
q−1, when m = m′ = 0,

0, otherwise.

When n ≥ 2. Then we have

N (x, µ) = N1 (x, µ) +N2 (x, µ) .

On the other hand, we have I0 (s, a) = 0 by Proposition 2 since k + h ≥ 2 and
h 6= 1. Thus we have

I (x, µ) = I1 (s, a) + I2 (s, a) .
We shall show the matching between Ni (x, µ) and Ii (s, a) for i = 1, 2.

Let us first consider the matching between I (s, a) and N2 (x, µ). By Proposi-
tion 4, I2 (s, a) vanishes unless n is even. When n is even, we have

I2 (s, a) = δ ($)−m−n (m+ n+ 1) q−
m
2 +m′ K`

(
2$−

n
2

1− x
,

2$
n
2 µ

1− x

)
.

On the other hand

N2 (x, µ) = δ ($)n qm
′+n (m+ n+ 1)

n−1∑
j=1

K`
(

2$−j

1− x
,
−2$jµ

1− x

)
.

Since

ord
(

2$−j

1− x

)
+ ord

(
−2$jµ

1− x

)
= −2m′ − n ≤ −2,

we have K`
(

2$−j

1−x ,
−2$jµ

1−x

)
= 0 unless n is even and j = n

2 . Thus N2 (x, µ) vanishes
unless n is even and when n is even we have

N2 (x, µ) = δ ($)n qm
′+n (m+ n+ 1) K`

(
2$−

n
2

1− x
,
−2$

n
2 µ

1− x

)
.
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Let us compare I1 (s, a) with N1 (x, µ). By Proposition 3, I1 (s, a) is given as
follows. We have

I1 (s, a) = δ ($)−m−n (n+ 1) q−
m
2
{

(m− n+ 1)− (m− n+ 3) q−1
}

when m ≥ n,
I1 (s, a) = −2δ ($)−2n+1 (n+ 1) q−

n+1
2

when m = n− 1,

I1 (s, a) = δ ($)−m−n (n+ 1) q−
m
2 +m′ K`

(
2$−

m+n
2 x

1− x
,
−2$

m+n
2 µ

1− x

)
when m ≤ n− 2 and m ≡ n (mod 2), and I1 (s, a) vanishes otherwise.

Let us compute N1 (x, µ). We recall that

(4.10) N1 (x, µ) = δ ($)n (n+ 1) qm
′+n

m+n−1∑
i=1

K`
(

2$−ix
1− x

,
−2$iµ

1− x

)
where

ord
(

2$−ix
1− x

)
+ ord

(
−2$iµ

1− x

)
= m− n− 2m′.

When m ≥ n, the sum of the ordinals of the arguments of the Kloosterman sum
is m− n ≥ 0. Hence the Kloosterman sum in (4.10) vanishes unless

min {−i+m, i− n} ≥ −1

i.e. n− 1 ≤ i ≤ m+ 1 and

K`
(

2$−ix
1− x

,
−2$iµ

1− x

)
=

{
1− q−1, when n ≤ i ≤ m,
−q−1, when i = n− 1, m+ 1.

Hence

N1 (x, µ) = δ ($)n (n+ 1) qn
{

(m− n+ 1)− (m− n+ 3) q−1
}
.

When m = n− 1, by Corollary 1, we have

K`
(

2$−ix
1− x

,
−2$iµ

1− x

)
=

{
−q−1, when i = n− 1, n,
0, otherwise.

Hence
N1 (x, µ) = −2δ ($)n (n+ 1) qn−1.

When 0 ≤ m ≤ n− 2, the Kloosterman sum K`
(

2$−ix
1−x , −2$iµ

1−x

)
vanishes unless

m ≡ n (mod 2) and j = m+n
2 since m− n− 2m′ ≤ −2. When m ≡ n (mod 2), we

have

N1 (x, µ) = δ ($)n (n+ 1) qm
′+nK`

(
2$−

m+n
2 x

1− x
,
−2$

m+n
2 µ

1− x

)
.

Thus we have shown

I (x, µ) = δ ($)−m−2n
q−

m
2 −nN (x, µ)

in every case, i.e. the equality (4.9) holds. �

Thus by (4.4) and (4.9), we have established the desired matching of the unit
elements of the Hecke algebras for the regular geometric terms.



CENTRAL VALUES OF THE DEGREE FOUR L-FUNCTIONS 27

References
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