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Abstract. We conjecture that, for a fixed prime p, rational elliptic curves with
higher rank tend to have more points mod p. We show that there is an analogous
bias for modular forms with respect to root numbers, and conjecture that the order
of the rank bias for elliptic curves is greater than that of the root number bias for
modular forms.

1. Introduction and conjectures

An elliptic curve E over a field k is a smooth projective curve of genus 1 with a
distinguished k-point O. If the characteristic of k is not 2, then E has Weierstrass model
y2 = f(x), where f(x) is a cubic polynomial with distinct roots, and O is the point
at infinity. Moreover, E has the structure of an abelian group, with the distinguished
point O being the identity element. Mordell showed that a rational elliptic curve E/Q
is a finitely-generated group, and thus the set of rational points E(Q) is isomorphic as
an abstract group to Zr ⊕Etors(Q) for some r ≥ 0, where Etors(Q) is the finite abelian
group of rational torsion points. The non-negative integer r is called the (algebraic)
rank of E.

A natural question is whether elliptic curves with more rational points have more
points mod p. To be precise, any rational elliptic curve E/Q has a minimal model
y2 +a1xy+a3y = x3 +a2x

2 +a4x+a6 over Z. Minimality means that the discriminant
∆ ∈ Z − {0} of this equation is minimal in absolute value. For a prime p - ∆, one
can reduce E mod p to get an elliptic curve E(Fp) over Fp. The expected number of
points on an elliptic curve over Fp is p+ 1, and Hasse’s bound states that the deviation
from the mean, ap = ap(E) = p+ 1−#E(Fp), is less than 2

√
p in absolute value. Our

question then is: for p - ∆, does ap tend to be smaller, i.e., does #E(Fp) tend to be
larger, when E has larger rank?

Much is understood in the “horizontal” direction. Namely if E is fixed, then the
Sato–Tate conjecture (now a theorem by [BLGHT11]) asserts that the limiting distri-
bution of

ap√
p is independent of the rank of E. However, if one numerically computes

examples for various E, one notices an apparent bias—the ap’s tend to be smaller when
E has larger rank. Necessarily such a bias would be bounded by the error term in the
convergence to the Sato–Tate distribution. Indeed, one may interpret the Birch and
Swinnerton-Dyer conjecture as a certain measure of this bias. In its original formula-

tion in [BSD65], it asserts that, up to a constant, the order of growth of
∏
p<X

#E(Fp)
p

is (logX)r, where p runs over primes of good reduction (i.e., p - ∆) and r is the rank of
E. This may be very loosely interpreted as saying that elliptic curves with higher ranks
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have more points mod p for large primes p. We also remark that Nagao’s conjecture
(see [Nag97], [RS98]) makes a similar prediction for averages over 1-parameter families
of elliptic curves.

Here we investigate the above question in the “vertical” direction: for a fixed prime
p and varying elliptic curves E of rank r, does ap tend to be smaller the larger r is? Or
to put it loosely: do elliptic curves with higher ranks also have more points mod p for
small primes p? A basic issue is how to try to measure such a bias, as the Birch and
Swinnerton-Dyer framework (essentially a weighted geometric mean of ap’s as p varies)
has no obvious analogue for a fixed p.

Since such problems seem very difficult to tackle theoretically, we investigate this
question computationally, and theoretically study an analogous question for modular
forms. We will first discuss the case of modular forms, which will help motivate our
framework for measuring and conjecturing bias for elliptic curves.

We remark that, following the vein of Nagao’s conjecture, different questions about
biases of ap’s in the vertical direction have been studied in 1-parameter families in a
number of recent articles (e.g., [MMRW16], [ACF+], [KN]).

1.1. Root number bias for modular forms. Elliptic curves E of conductor N
correspond to rational newforms f ∈ S2(N) of weight 2 and level N such that L(s, E) =
L(s, f), and thus each ap(f) = ap(E). The root number w of f (or E) is ±1, which
is the sign in the functional equation of the L-function. The analytic rank of this L-
function is even or odd according to whether w is +1 or −1. According to the Birch
and Swinnerton-Dyer conjecture, the analytic rank should be the same as the algebraic
rank. The minimalist conjecture predicts that 100% of the time, the rank is 0 or 1,
according to the root number being +1 or −1.

In Corollary 2.3, we show that for a fixed prime p, the average of ap(f) over newforms
f ∈ S2(N) with root number ±1 grows approximately like ± 1√

N
for large squarefree N

prime to p. In fact, we more generally treat newforms of even weight k, and the method
applies to arbitrary Fourier coefficients an(f), however the signs for k ≡ 0 mod 4 are
opposite to those for k ≡ 2 mod 4.

We now recast this bias in terms of weighted averages of Fourier coefficients over
varying N . Let F±(X) be the union of the sets of newforms f with root number ±1 in
S2(N), as N ranges over squarefree levels less than X. For a newform f , let Nf denote
its exact level, i.e., f is a newform in S2(Nf ). Let φ : N → R>0 be a monotonic non-
decreasing function of at most polynomial growth. We call such a φ a weight function.
Consider the weighted average of p-th Fourier coefficients,

(1.1) A±(p,X;φ) =
1

#F±(X)

∑
f∈F±(X)

ap(f)φ(Nf ).

Then Corollary 2.3 implies the following.

Proposition 1.1. Fix a prime p, a weight function φ as above, and ε > 0.

(1) For any φ, A+(p,X;φ) > A−(p,X;φ) for sufficiently large X.

(2) If φ(N)� N
1
2
−ε, then A±(p,X;φ)→ 0 as X →∞.

(3) If φ(N)� N
1
2
+ε, then A±(p,X;φ)→ ±∞ as X →∞.
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The polynomial growth condition on φ is not actually needed for this proposition,
but we impose it for the purposes of preventing erratic behavior in weighted averages
for sequences with greater variation. The reason to restrict to forms of squarefree
level is to avoid alternating sums of class numbers that arise in the trace formula for
non-squarefree levels.

The first statement asserts that there is a persistent root number bias in the ap’s.
(In fact, for any φ, A+(p,X;φ) > 0 and A−(p,X;φ) < 0 for sufficiently large X, which
corresponds to the sign matching in assertion (3).) The latter two statements quantify
the size of the bias—they say the bias is roughly on the order of the inverse square root
of the level. While Proposition 1.1 is less precise than Corollary 2.3, this formulation
provides a model for investigating and measuring bias for elliptic curves.

Our original question about the rank elliptic curves affecting the size of the ap’s is ge-
ometrically motivated. One can also interpret the bias in Proposition 1.1 geometrically
as follows.

Let f ∈ S2(N) be a newform with rationality field Kf . Its rationality degree d =
[Kf : Q] equals the number of Galois conjugates fσ of f . Now (the Galois orbit of)
f corresponds to a rational abelian variety Af of dimension d such that L(s,Af ) =∏
σ L(s, fσ). Let ap(Af ) =

∑
σ ap(f

σ) = trKf/Q ap(f). Then, for p - N , #Af (Fp) =∏
σ(p + 1 − ap(fσ)), which is a degree d monic polynomial in p, and the coefficient of

pd−1 is −ap(Af ). Hence we may think of ap(Af )pd−1 being a “first order estimate” for

pd −#Af (Fp).
For simplicity, say N is prime. Then S2(N) has 2 Atkin–Lehner eigenspaces, each

of size approximately N−1
24 (e.g., see [Mar18]), corresponding to root numbers +1 and

−1. We conjectured in [Mar21] that each Atkin–Lehner space is generated by a single
Galois orbit 100% of the time. Suppose the root number +1 (resp. −1) newforms are
all Galois conjugates of a single newform f+ (resp. f−). The new part of the Jacobian
J0(N) of X0(N) decomposes into 2 simple pieces A+ ⊕A−, where A± = Af± , and the

average of the ap(f)’s with root number ±1 is approximately 24
N−1 · ap(A±). By the

minimalist philosophy, we further expect that 100% of the time A+ has rank 0 and A−
has rank dimA− ≈ N−1

24 . Now Proposition 1.1 (or rather Corollary 2.3 to restrict to
prime levels) says that, for fixed p - N and prime N → ∞, ap(A±) grows roughly like

±
√
N . In particular, the ap(A)’s tend to be smaller for higher-rank modular (GL(2)

type) abelian varieties along this family. These remarks extend to the case of squarefree
N with suitable modification.

1.2. Rank bias for elliptic curves. Two common ways of counting rational elliptic
curves E are to (partially) order by conductor or (a suitable choice of) height. In
addition, one can either count isomorphism classes or isogeny classes of curves, but it
seems likely that this distinction will not significantly affect the statistics we consider.
Note that ap(E) only depends on the isogeny class of E.

For definiteness, we let E be one of the following three families of (partially ordered
classes of) rational elliptic curves: (i) isogeny classes of elliptic curves of prime conduc-
tor, (partially) ordered by conductor; (ii) isogeny classes of all elliptic curves, ordered
by conductor; and (iii) isomorphism classes of all elliptic curves, ordered by (minimal)
naive height. These families are respectively denoted by Epr, Eall, and Eht.
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When E = Epr or Eall, let |E| = NE denote the conductor of E. When E = Eht, let
|E| = HE denote the minimum naive height in the isomorphism class of E. Let E(X)
be the set of (classes of) elliptic curves in E with |E| < X. Let Er(X) be the subset of
E in E(X) of rank r. Set Er =

⋃
X Er(X).

For a weight function φ as above, we define the weighted average

(1.2) Ar(p,X;φ) = AEr (p,X;φ) =
1

#Er(X)

∑
E∈Er(X), |E|<X, p-NE

ap(E)φ(NE).

(The condition p - NE is equivalent to p - ∆, where ∆ is the minimal discriminant.)
Note that in all cases we are weighting by conductor, in analogy with the weighting
of modular forms by level in (1.1). When ordering by height HE , one could instead
weight the averages by φ(HE) rather than φ(NE), and we briefly remark on this below.

The following two conjectures assert an analogue of Proposition 1.1 for quantifying
a rank bias in the ap’s of elliptic curves for any fixed prime p.

Conjecture 1.2 (Existence of rank bias). Let E be Epr, Eall or Eht, and r1 ≤ r2.
Suppose Er1 and Er2 are infinite. Then for any weight function φ, Ar1(p,X;φ) >
Ar2(p,X;φ) for all sufficiently large X.

Conjecture 1.3 (Order of rank bias). Let E be Epr, Eall or Eht, and fix r ≥ 0. Suppose
Er is infinite. Then there exists a δ > 0 such that for any ε > 0 the following hold.

(1) If φ(N)� (logN)δ−ε, then Ar(p,X;φ)→ 0 as X →∞
(2) If φ(N) � (logN)δ+ε, then |Ar(p,X;φ)| → ∞. Moreover Ar(p,X;φ) → +∞

if r ≤ 1 and Ar(p,X;φ)→ −∞ if r ≥ 2.

The first conjecture asserts that there is a persistent bias toward the ap’s being
smaller for larger ranks, when we consider sufficiently large families of elliptic curves.
Note that in special families, e.g., quadratic twists, ap’s can be have in special ways
which do not exhibit such a bias. It is not known for which ranks r there are infinitely
many (or even any) curves of rank r (see [PPVW19] for recent conjectures). Hence we
impose hypotheses on the infinitude of Er1 and Er2 to try to avoid considering families
which are too small or special.

We remark that while it seems difficult to unconditionally prove there are infinitely
many elliptic curves of rank r for r ≥ 2 (see [BJ16] for a proof for r = 2 conditional on
the parity conjecture), there are a number of results showing that there are infinitely
many elliptic curves of rank ≥ r, with the record being for r = 19 in unpublished work
of Elkies (see, e.g., [PPVW19] for a summary of results in this vein).

The second conjecture asserts that the rank bias has roughly inverse polylogarithmic
order in the conductor. In fact, it is plausible that the order of bias is simply inverse
logarithmic, i.e., one can take δ = 1 in Conjecture 1.3, but the data are not entirely
clear (see Section 3). Note that if we take the constant weight function φ(N) = 1,
Conjecture 1.3(1) asserts that the honest averages of the ap’s tend to 0, similar to
the case of modular forms in Proposition 1.1. However, there are a couple of obvious
differences from the situation of Proposition 1.1.

One evident difference is that the approximate order of this bias ((logN)−δ) is larger

than what we saw for modular forms (N−
1
2 ). From the geometric interpretation of

Proposition 1.1, there is no obvious guess for the order of bias of ap(A)’s for modular
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abelian varieties as a simultaneous function of rank, dimension and conductor, since
the dimension, conductor and rank are all strongly correlated that context. However,
the notion that the order of rank bias is larger than any N−ε when we restrict to A
of bounded dimension, e.g., for elliptic curves, at least seems compatible with Propo-
sition 1.1.

Another difference is that we are measuring rank bias for elliptic curves, but root
number bias for modular forms. By the minimalist conjecture, it is natural to ex-
pect that if we look at averages of ap(E)’s where E has root number +1 (resp. −1),
this should behave the same as the rank 0 (resp. rank 1) averages. However, Conjec-
ture 1.3(2) says that the ap(E)’s tend to be positive for both rank 0 and rank 1, rather
than matching the sign of the root number!

It could happen that, say, the contribution from the rank 3 and rank 5 elliptic
curves is significant enough to make the (suitably weighted averages of) ap(E)’s tend
to be negative for root number −1. On the other hand, it also seems theoretically
plausible that for either root number +1 or −1 (and thus for all ranks combined),
the ap(E)’s tend to be positive, and that the geometric reason for the root number
bias in signs for modular forms is due to large rank abelian varieties. Exploratory
calculations did not exhibit a positive bias in (weighted averages of) ap(E)’s with fixed
root number. However, it is hard to draw clear conclusions from these calculations
because the numerical convergence of ranks to the minimalist conjecture is very slow,
i.e., in the range we are able to compute, there is still a very large proportion of rank
≥ 2 curves (see below).

We do remark that if we count integral Weierstrass equations of elliptic curves or-
dered by height (which is almost the same as our family Eht), then the reductions mod p
are evenly distributed. By a result of Birch [Bir68], this means the unweighted averages
of ap(E)’s over all ranks for this family tends to 0. This is compatible with Conjec-
ture 1.3(1), and it does not seem to preclude the possibility that suitably weighted
averages of ap(E)’s over all ranks may be positive.

1.3. Evidence and meta-analysis. Our evidence for these conjectures is purely com-
putational, and is presented in Section 3.

For Epr and Eall, we estimate weighted averages using the Stein–Watkins databases
[SW02] consisting of over 11 milion isogeny classes of prime conductor N < 1010 and
over 115 million isogeny classes of arbitrary conductors N ≤ 108. The Stein–Watkins
databases do not catalogue all isogeny classes in these conductor ranges, but at least
the Stein–Watkins prime conductor database appears to be nearly complete: [BGR19]
estimates it contains over 99.8% of curves with prime conductor N < 1010. (In fact
[BGR19] computed a much larger database of prime conductor elliptic curves, but that
database does not include rank calculations which we require.) For Eht, we compute
weighted averages using the height database from [BHK+16], which contains all of the
over 238 million curves with naive height H ≤ 2.7 · 1010.

In fact, the reason for formulating our conjectures for the three specific families Epr,
Eall and Eht is that they correspond to these existing extensive databases of curves that
include conjectural ranks. The Stein–Watkins databases include numerically computed
analytic ranks. The ranks computed in the height database in general assume several
standard conjectures, but are unconditional over 80% of the time.
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For these 3 databases, we compute weighted averages of ap(E)’s with |E| < X and
fixed rank r ≤ 5 for both a variety of weight functions φ, and a variety of primes
p ≤ 300. Note that there are not enough curves in these databases to get meaningful
statistics for r ≥ 6. For a fixed weight function φ and rank r, we found the general
behavior to be more-or-less similar for each of the 3 databases and for any choice of p.
However we will point out a couple of apparent exceptions to this trend in Section 3.

When φ(N) = 1, the weighted average graphs quite quickly tend to zero as asserted in
Conjecture 1.3(1), and do not appear to cross each other for different ranks beyond very

small X, as asserted in Conjecture 1.2. When φ(N) �
√
N or larger, the weighted

averages also clearly tend to ±∞. More generally, for φ(N) = N δ, the weighted
average graphs appear to grow like CXδ(1 + O(Xε)) for some constant nonzero C.
For φ(N) = log(N), some graphs appear as though they may have a finite nonzero
asymptote, and some as though they may be slowly increasing or decreasing, depending
on both p and r. For φ(N) = log logN most graphs appear to go to 0, and for
φ(N) = (logN)2 most graphs appear to go to ±∞ slowly. In summary, the data
support Conjectures 1.2 and 1.3 quite well, possibly with δ = 1 in Conjecture 1.3. It
may be that in order for Ar(p,X;φ) to tend to a nonzero constant one needs to make
a more complicated choice of φ(N), which potentially depends on r.

We expect these conjectures are fairly robust with respect to the choice of family.
E.g., the conjectures should be unchanged if one looks at isomorphism rather than
isogeny classes of elliptic curves ordered by conductor (the Stein–Watkins databases
also include isomorphism classes), or if one restricts to squarefree conductors. We have
also computed some weighted averages in the family Eht where one weights by φ(HE)
rather than φ(NE), and the general behavior appears similar. For brevity, we have not
included details of weighting by height.

It is well known that one needs to compute very far out to get convincing emperical
evidence for the minimalist conjecture, i.e., that the average rank of elliptic curves
tends to 0.5. Indeed, the average rank is numerically increasing in the Stein–Watkins
database for general conductors—see [BMSW07]. However, in the Stein–Watkins prime
conductor database, we see that the average rank per isogeny class quickly goes up to
just over 0.98, and then gradually decreases to approximately 0.96544. Moreover, in
[BHK+16], the authors find that the average rank increases to about 0.908 around
height 6 · 108, and then decreases to around 0.901 by height 2.7 · 1010.

Given this, it is natural to wonder how much one can trust that our calculations are
representative of asymptotic behavior. First, since we are separating by rank, there
is no direct effect of the slow convergence to the minimalist conjecture on our data
(except that it means we have many curves of rank ≥ 2 in our databases, which is
actually helpful for our experiments). It is of course possible that some of our graphs
which appear to have a nonzero (or infinite) limit, which would signify a persistent bias,
eventually tend to 0, or vice versa. However, we find the asymptotics of the graphs
quite compelling up to a factor of order (1 +O(Xε)).

We also note that many other statistics of elliptic curves converge to expectations
rather quickly. For instance, in the horizontal direction, the ap’s tend to the Sato–
Tate distributions quite quickly. In the vertical direction, numerical convergence to the
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parity principle—the notion that half of all curves should have root number +1 and
half have −1—is also quite fast (e.g., see [BMSW07]).

Consequently we find the computational evidence very convincing of the existence
of a rank bias on the order of O(N−ε), even if it is difficult to tease out the exact order
of bias from our calculations.

Last, we make a comparison with a naive random model. Suppose the ap(E)’s behave
like independent identically distributed random variables. The number of elliptic curves

of conductor or discriminant < X is expected to grow like X
5
6 (see [Wat08]). Hence the

variance of sums as in (1.2) should be roughly of order X2α− 5
6 for φ(N) = Nα if there

is no significant correlation between the rank and ap(E). In particular, this variance

would tend to zero if φ(N)� N
5
12
−ε, which does not agree with the numerical evidence

for Conjecture 1.3, and thus even the first statement in Conjecture 1.3(2) supports the
notion that the rank of E is correlated with ap(E).

We remark that similarly modeling ap(f)’s as independent random variables says that

the sums in (1.1) should have variance on the order of X2(α−1) for φ(N) = Nα if there
is no significant correlation between the root number and ap(f). This would suggest
that the sums tend to 0 if φ(N) � N1−ε, which also does not match Proposition 1.1.
(Of course, since most ap(f) should be Galois conjugates for newform f in a given
Atkin-Lehner eigenspace of S2(N), they are not actually independent.)

2. Traces of Hecke operators

Here we exhibit a bias in the traces of Hecke operators Tn on spaces of newforms
with fixed root numbers. Note that in [Mar18, Section 2], explicit dimension formulas
for these spaces were proven, and a strict bias towards root number +1 was exhibited.
That may be viewed as the n = 1 analogue of what we do here.

First we set our notation. Denote by ω(N) the number of prime divisors of N , by
σ1(n) the sum-of-divisors function, and by δi,j the Kronecker δ function. Let H(n)
be the Hurwitz class number, i.e., the number of SL2(Z)-equivalence classes of positive
definite integral binary quadratic forms Q of discriminant −n weighted by #Aut(Q)/2.
Throughout, multiple occurrences of ± and/or ∓ within a single statement are to be
interpreted as cases dependent on the first occurrence.

Let Sk(N) denote the space of holomorphic even weight k cusp forms for Γ0(N), and
Snew
k (N) the subspace spanned by newforms. Let WN =

∏
p|N Wp, where Wp denotes

the p-th Atkin–Lehner operator on Sk(N). For S = Sk(N) or S = Snew
k (N), denote

by S± the subspace of S spanned by eigenforms with WN -eigenvalue equal to ±(−1)
k
2 .

Then Snew
k (N)± is the space spanned by the newforms with root number ±1. For a

subspace S of Sk(N) and an operator T on Sk(N) which leaves S invariant, denote by
trS T the trace of the restriction of T to S.

Lemma 2.1. Suppose N is squarefree, and (n,N) = 1. Then trSnew
k (N) TnWN =

trSk(N) TnWN .

Proof. This is a special case of [Yam73, Proposition 2]. Here is an alternative argument
in terms of representations, which we find more enlightening.
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Suppose f ∈ Snew
k (M) is a newform, where M is a proper divisor of N . Let π =

⊗
πv

be the associated cuspidal representation of GL(2), and φ =
⊗
φv be a newvector

associated to f . Then the contribution πK0(N) of π to Sk(N) has a basis of the form
WQφ where Q ranges over positive divisors of M , and WQφ =

⊗
φ′v where φ′q =

πq

(
1

q

)
φq if q|Q and π′v = πv if v - Q. Now observe that when (n,N) = 1, Tn acts

by a scalar on πK0(N) and WN acts as an involution on the above basis elements with
no fixed points. Thus TnWN has trace zero on πK0(N), and consequently on the whole
old space of Sk(N). �

Proposition 2.2. Suppose N is squarefree, n > 1 is nonsquare, (n,N) = 1 and
N > 4n. Then∣∣∣∣trSnew

k (N)± Tn ∓
1

4
(−n)

k−2
2 H(4nN)

∣∣∣∣ < (2ω(N)(4n)
k
2 + δk,2

)
σ1(n).

We remark the restriction to n being nonsquare here is purely for simplicity. Other-
wise there is an extra term in the explicit formula for trSnew

k (N) Tn arising in the proof
below.

Proof. Let n be a positive integer coprime to N . By definition of our ±-spaces, we
have

(2.1) trSnew
k (N)± Tn =

1

2

(
trSnew

k (N) Tn ± (−1)
k
2 trSnew

k (N) TnWN

)
.

Yamauchi [Yam73] proved a formula for trSk(N) TnWN for general N , though that
work contained clerical errors. A corrected form was given by Skoruppa and Zagier
[SZ88, (2.7)], which for squarefree N simplifies to:

trSk(N) TnWN = −1

2

∑
s2≤4nN,N |s

pk(s/
√
N,n)H(4nN − s2) + δk,2σ1(n).

Here, when b2− 4c 6= 0, pk(b, c) = (ρk−11 − ρk−12 )/(ρ1− ρ2) where ρ1, ρ2 are the roots of
x2 − bx+ c. If N > 4n, we only get the s = 0 term in the first sum:

(2.2) trSk(N) TnWN = −1

2
n

k−2
2 H(4nN) + δk,2σ1(n).

By the above lemma, we now have an explicit formula for trSnew
k (N) TnWN .

An explicit formula for trSnew
k (N) Tn is given in [MS10, Theorem 5] for arbitrary N .

When N is squarefree and n > 1 is nonsquare, this gives

trSnew
k (N) Tn = −1

2

∑
t2<4n

pk(t, n)
∑

f2|(4n−t2)

hw(
t2 − 4n

f2
)B2(N)f + δk,2µ(N)σ1(n).

Here t ∈ Z, f ∈ N, hw(D) is the class number of the imaginary quadratic order O(D)
of discriminant D times [O(D)× : Z×] (interpreted as 0 if D is not a discriminant), and

B2(N)f =
∏
p|N B2(p)f where B2(p)f is p− 1 if p|f and

(
t2−4n
p

)
− 1 otherwise.

We note that
∑

f2|(4n−t2) hw( t
2−4n
f2

) = H(4n − t2) and and
∑

t2<4nH(4n − t2) <

2σ1(n) − 1 (e.g., see [MS10, Proposition 12]). Since also |pk(t, n)| < 2(4n)
k−1
2 and
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B2(N)f ≤ f2ω(N), we have

(2.3)
∣∣∣trSnew

k (N) Tn

∣∣∣ < (2ω(N)+1(4n)
k
2 + δk,2

)
σ1(n).

(See also [MS10, Proposition 14] for a similar bound.)
Now combine (2.1) with (2.2) and (2.3). �

In fact one can use the formulas in [Yam73], [SZ88] and [MS10] to give explicit
formulas for trSnew

k (N)± Tn without assuming N is squarefree (but still coprime to n) or

larger than 4n. However, such formulas will involve alternating sums of class numbers,
which makes it more difficult to generalize the following corollary to N non-squarefree.

Corollary 2.3. Fix k ≥ 2 even, n > 1 squarefree, and ε > 0. As N → ∞ along a
sequence of squarefree numbers coprime to N , we have

N
1
2
−ε � ±(−1)

k−2
2 trSnew

k (N)± Tn � N
1
2 logN.

Proof. Note that, along a sequence of squarefree N , 2ω(N) = O(N ε); see for instance
the proof of [MW20, Proposition 3.10(ii)]. Consequently,

trSnew
k (N)± Tn = ±1

4
(−n)

k−2
2 H(4nN) +O(N ε).

Since nN is squarefree, 4nN is a fundamental discriminant and H(4nN) is the usual
class number h(−4nN). Now for fundamental discriminants −D < 0, we use the stan-

dard upper bound h(−D)� D
1
2 logD and Siegel’s (ineffective) lower bound h(−D)�

D
1
2
−ε. �

Roughly, this says that trSnew
k (N)± Tp grows approximately like ±

√
N when k ≡

2 mod 4, and approximately like ∓
√
N when k ≡ 0 mod 4. In particular, when k = 2

and φ is any weight function, we have that A+(p,X;φ) > 0 and A−(p,X;φ) < 0 for X
sufficiently large. This proves the first part of Proposition 1.1.

Moreover, by [Mar18, Section 2] we have dimSnew
2 (N)± = ϕ(N)

12 + O(N
1
2 logN).

Here ϕ denotes the Euler totient, not to be confused with a weight function φ. Now
note that, for any ε > 0, we have X2−ε � ∑

N<X ϕ(N) � X2, where in the sum N
is restricted to positive squarefree integers. For the lower bound, we are using that
the squarefree integers have positive natural density in N and satisfy ϕ(N) ≥ N

2ω(N) ,

together with the abovementioned fact that 2ω(N) = O(N ε). Consequently, we see that∑
N<X N

1
2
−εφ(N)

X2
� |A±(p,X;φ)| �

∑
N<X N

1
2 logNφ(N)

X2−ε

for any weight function φ and constant ε > 0. (In both sums, N is restricted to positive
squarefree N .) This immediately gives the remainder of Proposition 1.1.

3. Data

Now we present and briefly discuss some data supporting our conjectures.
We computed weighted averages as in (1.2) for the finite subfamilies ESWpr , ESWall and

Edbht of Epr, Eall and Eht which respectively consist of all classes of curves contained within
9
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Figure 1. Log weight with p = 7 and various ranks for ESW
pr (left), ESW

all (middle),

and Edb
ht (right); all graphs have the same legend
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Figure 2. Constant (left) and
√
N (right) weights for p = 7 and E = ESW

pr

the Stein–Watkins prime conductor database, Stein–Watkins arbitrary conductor data-
base and the height database from [BHK+16]. These calculations only approximate the
averages in (1.2) for X < 1010, X ≤ 108 and X ≤ 2.7× 1010 for the two reasons men-
tioned in Section 1: the Stein–Watkins databases are incomplete and many of the ranks
in the databases are conjectural.

Assuming correctness of the ranks, we computed the weighted averages AEr (p,X;φ)
for E = ESWpr , ESWall and Edbht for a wide variety of primes p ≤ 300 and weight functions φ
for X up to the relevant database bound. On a single CPU core, running calculations
for several p at a time, the calculations for a given φ took approximately 75–100 minutes
of real time for ESWpr , 13–16 hours for ESWall , and 24–28 hours for Edbht .

3.1. Varying the weight function φ. For a fixed r ≤ 4 and φ, the behavior of
AEr (p,X;φ) is generally similar for both different p and E . See Fig. 1 for overlaid
graphs with p = 7, φ(N) = logN , and various r for each E . Subsequent graphs for a
variety of p will indicate that the general shapes of the graphs are independent of p, so
there is not much lost in specializing these graphs to p = 7.

These graphs strongly support Conjecture 1.2, at least for φ(N) = logN . We have
examined similar graphs for a variety of weight functions φ and primes p, and these
graphs are equally convincing in support of Conjecture 1.2. E.g., see Figs. 2 and 3 for
the case E = ESWpr , p = 7 with the weights φ(N) = 1, φ(N) =

√
N , φ(N) = N and

φ(N) = N2.
10
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Figure 4. Log weight for ESW
pr with p = 7

3.2. Varying ranks and families for log weighting. The graphs in Fig. 1 support
Conjecture 1.3, but due to the scale the overlaid graphs mask the precise behavior of
each rank. See Figs. 4 to 6 for graphs of individual ranks with p = 7 and φ(N) = logN
for the families E = ESWpr , ESWall and Edbht , respectively.

Note that for the prime conductor and height databases with log weighting, for each
r the graph appears to be eventually relatively flat or possibly tending very slowly away
from 0. The case of E = ESWall is different however: except for r = 1 where the graph
appears to be slowing increasing away from 0, but for all other ranks the graphs appear
to bend towards 0. While it may be that the behavior is actually different for the family
Eall, we suspect this difference is more likely due to factors such as the Stein–Watkins
all conductor database being rather incomplete (and perhaps giving a biased sample of
Eall) and only going up to conductor 108. However, even just restricting to the prime
conductor and height databases, we see that for some ranks the log weighted averages
appear to flatten out and for some ranks (notably r = 2 and r = 3) they appear to
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Figure 6. Log weight for Ed
ht with p = 7

be slowly tending away from 0. (We have also included r = 5 graphs for the prime
conductor and height databases, but there is perhaps not enough data to read too much
into these graphs.)

3.3. Log log and polylog weights. To try to get a more precise sense of the order of
bias, in Figs. 7 to 9 we present several graphs for ranks 0–2 for each of our 3 databases.
(Analogous graphs for ranks 3 and 4 look similar to the rank 2 graphs, and we omit

12
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Figure 7. Rank 0 graphs with log log (top), log (middle) and log2 (bottom) weights
for ESW

pr (left) and ESW
all (middle), and Edb

ht (right); all graphs have the same legend

them.) Namely, we graph AE(p,X;φ) for odd p ≤ 23 with the 3 weight functions
φ(N) = log logN , φ(N) = logN and φ(N) = (logN)2.

The first observation is that, indeed, the graphs of AE(p,X;φ) have the same shape
for each p. Second, in all cases except for E = ESWall with r = 1 and φ(N) = log logN
(which may be different due to limited data as mentioned in the previous subsection),
we see that the graphs are tending toward 0 for the log log weight, and tending toward
±∞ for the log2 weight, supporting Conjecture 1.3, possibly with δ = 1.

Note that when r = 0 and r = 1, the log weighted graphs for E = ESWpr appear to be
slightly increasing for some p, roughly flat for other p, and slightly decreasing for other
p. Again we suspect these differences are due to limited data, as the prime conductor
database contains significantly fewer curves than the other databases.

3.4. Testing larger p with log weighting. Our final graphs are intended to illustrate
this idea that graphs with limited data may behave differently, especially for larger p.
First, consider Fig. 10 which consists of rank 2 graphs for E = ESWall and log weight for
a variety of primes p ≤ 271. Note these graphs all have the same shape. (Of course
we expect that the weighted averages tend to have larger absolute value for larger p

13
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Figure 8. Rank 1 graphs with log log (top), log (middle) and log2 (bottom) weights
for ESW

pr (left) and ESW
all (middle), and Edb

ht (right); all graphs have the same legend

because the Hecke bound grows with p.) If one plots the same graphs for rank 0 or 1,
we again see the shape is essentially independent of p (the case p = 79 case with r = 0
is an exception).

However, if we look at rank 3 graphs the shape does seem to depend on p for the
larger values of p using the Stein–Watkins database, but not the height database. See
Fig. 11. We attribute this to there being fewer rank 3 curves in the databases than
ranks 0, 1 or 2, but there being many more curves in the height database than the
Stein–Watkins database.

Thus we expect that the general behavior of weighted averages is independent of
p, but it may require a very large amount of data to numerically see the asymptotic
behavior, especially for larger p and φ having logarithmic growth.

3.5. Summary. In summary, we find the data quite suggestive that, for each of our
3 families, the weighted averages AEr (p,X;φ) tend to 0 if φ(N) � log logN and tend
to +∞ (resp. −∞) if φ(N)� (logN)2 and r ≤ 1 (resp. r ≥ 2). When φ(N) = logN ,
some of the graphs appear very flat, and some do not. Because of the variation of these
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Figure 10. Log weight with r = 2 and various p for ESW
all

graphs, the precise asymptotic behavior is not apparent with the databases currently
available to us, but it seems plausible that the value of δ in Conjecture 1.3 may be 1.
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