
2 Primes in extensions

This chapter is about the following basic question: given an extension of number fields L/K and
a prime ideal p in OK , how does pOL factor into prime ideals of OL? This question is intimately
tied up with many questions of arithmetic. Going back to our motivating question of which primes
p are of the form p = x2 + ny2 (n �= 1 squarefree), we will see that these are essentialy the p for
which (p) is a product of two principal ideals in Q(

√
−n). After addressing this general question

about splitting of prime ideals, we will apply this to primes of the form x2 + ny2.
Afterwards, we may do some more stuff, but then again maybe we won’t.
Note: we will sometimes talk about “ideals” of K or L, or “primes” of K or L. This is merely a

simplification of terminology and simply means (ordinary) ideals of OK or OL, or prime ideals of
OK or OL.

Another piece of notation to be careful of: if α ∈ OK , then (α) may represent αOK or αOL

depending upon whether we are talking about ideals of K or ideals of L. This should hopefully be
clear from context in most cases. If not, we will explicitly write αOK or αOL.

The presentation of this material in this chapter is, for the most part, based on [Marcus] and,
to a lesser extent, [Cohn] (for the quadratic case) and [Neukirch].

2.1 Splitting of primes

Throughout L/K denotes an extension of number fields. Before we give the basic definitions, let’s
recall what happens in the simplest example, which we studied last semester.

Example 2.1.1. Let K = Q and L = Q(i). Since OK = Z is a PID, any prime ideal of OK is
of the form (p) where p is a prime of Z. If p = x2 + y2 = NL/K(x + yi), then p = αβ for some
α,β ∈ OL and (p) = (α)(β) in OL, i.e., (p) is a product of two principal ideals in OL. Furthermore
p1 = (α) and p2 = (β) are both prime since they have norm p. The ideals p1 and p2 are distinct
except in the case p = 2 = (1 + i)(1− i) since 1 + i = −i(1− i), i.e., 1 + i and 1− i differ by units.

If p is not a sum of two squares, then this means there is no element of norm p in OL, so p
is irreducible in OL. Hence if some prime ideal p of OL divides (p) but p �= (p), then it can’t be
principal (otherwise, the generator of p would divide p). However hL = 1 so OL is a PID. Thus
(p) = pOL = {pα : α ∈ OL} is itself a prime ideal.

Hence in this example, there are 3 possibilities for what happens to a prime ideal pOK of K in
the extension L:

(1) it splits as a product of two distinct prime ideals (p) = p1p2 in OL iff ±p = x2 + y2 and
p �= 2, i.e., iff p ≡ 1 mod 4;

(2) it ramifies as the square of a prime ideal (p) = 2OL = (1 + i)2 = p2 in OL iff ±p = 2; and
(3) it remains prime or is inert, i.e., pOL is a prime ideal of OL, if and only if ±p �= x2 + y2,

i.e., iff p ≡ 3 mod 4.

If a is an ideal of OK , we define

aOL = {a1x1 + a2x2 + · · · + akxk : ai ∈ a, xi ∈ OL} .

Notice this is just like the definition of the product of two ideals of the same ring. It is easy to see
that this is the smallest ideal of OL which contains the set a (see exercise below). Note if a = (a)

is a principal ideal of OK , then aOL = (a) = {ax : x ∈ OL}.
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Exercise 2.1. Let a be an ideal of OK and A be an ideal of OL. Show aOL is an ideal of OL and
A ∩K = A ∩ OK (justify this equality) is an ideal of OK . We call aOL the extension of a to L
and A ∩OK the restriction of A to K.

It is tradition to use gothic lower case letters for ideals of OK and upper case gothic letters for
ideals of OL. (Though I suppose it’s also tradition to write OK as OK , I’m not as fond of that
one.) However if K = Q, we just use integers for the ideals of OK = Z since they are all principal,
and lower case gothic letters for ideals of the extension L, as in the example above. If you have
trouble writing gothic letters by hand, you can just write the corresponding roman letter with an
underscore, or use another script.

While the extension and restriction of ideals are defined uniquely, this is not a 1-to-1 correspon-
dence, as there are more ideals of OL than ideals of OK . Precisely, we will see that different ideals
of OK extend to different ideals of OL, but different ideals of OL can restrict to the same ideal of
OK .

Definition 2.1.2. Let p be a prime ideal of OK and P be a prime ideal of OL. We say P lies over

(or lies above) p in L/K if P|pOL. We sometimes write this as P|p.

Going back to the previous example, in case (1) p1 and p2 lie above (p); in case (2) p lies above
(p) and in case (3) (p) = pOL lies above (p) = pOK .

Let p be a prime (ideal) of OK and P be a prime (ideal) of OL.

Lemma 2.1.3. The following are equivalent:
(a) P|p, i.e., P|pOL

(b) P ⊇ p

(c) P ∩OK = P ∩K = p.

Proof. (a) ⇒ (b) since P ⊇ pOL ⊇ p.
To see (b) ⇒ (c), observe that P ⊇ p implies P ∩OK ⊇ p. Since p is maximal, and P ∩OK is

an ideal by the exercise above, we have P ∩OK is either p or OK . The latter is impossible since it
would imply 1 ∈ P.

To see (c) ⇒ (b) ⇒ (a), note that (c) implies P ⊇ p is obvious, and then P ⊇ pOL since P is
an ideal of OL.

In light of the equivalence (a) ⇐⇒ (b), the notation P|p for one ideal lying over another agrees
with the usage of the notation I|J to mean divides (contains) for ideals of OK .

Another thing this lemma shows is that two different ideals of L can restrict to the same ideal
of K. For example if p is a prime of K = Q, and pOL = p1p2 with p1 �= p2, then p1 and p2 both
restrict to the ideal pZ of Z. More generally, all primes P of OL lying above a prime p of OK restrict
to p.

Proposition 2.1.4. Every prime P of OL lies above a unique prime p of K. Conversely, every
prime p of K is contained in some prime P of OL, i.e., there is some prime P of OL such that P|p.

Proof. Suppose P ∩ OK |ab for some ideals a, b of OK . Then P ⊇ (aOL)(bOL) so P ⊃ aOL or
P ⊃ bOL since P is prime. Restricting to K, we see P ∩ OK |a or P ∩ OK |b. Hence P ∩ OK is a
prime ideal p of OK by definition, i.e., P|p. By the previous lemma, P|p implies P∩OK = p, hence
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p is unique. This proves the first statement, though technically one should also show P∩OK �= {0}.
This is easy—see the exercise below.

The second statement is seemingly obvious: given p, the extension pOL has a prime ideal
factorization in OL, so any prime ideal P occurring in the factorization lies above p. However as
before, one needs to show a seemingly obvious technicality: pOL �= OL (otherwise pOL would not
have a prime ideal factorization). This is also an exercise.

Exercise 2.2. Let L/K be an extension of number fields and I be a (nonzero) ideal of OL. Show
I ∩OK �= {0}. (You may want to consider using norms.)

Exercise 2.3. (a) Let a be a proper ideal of OK . Show there exists a γ ∈ K − OK such that
γa ⊆ OK .

(b) Let L/K be an extension of number fields and p a prime ideal of OK . Show pOL �= OL.
(Use (a) to get a contradiction if pOL = OL.)

Exercise 2.4. (a) Let a, b be ideals of K. Show aOL|bOL =⇒ a|b. (Think about prime factoriza-
tions in K and L.)

(b) Show aOL ∩ OK = a for any ideal a of OK , i.e., the restriction of an extension gives the
ideal you started with. (Use (a) with b = aOL ∩OK .)

(c) Determine which ideals A of L satisfy (A∩OK)OL = A, i.e., determine when the extension
of the restriction of an ideal is the ideal you started with.

Looking back at the case of K = Q and L = Q(i) from Example 2.1.1, we see sometimes the
number of primes lying above p is 1 and sometimes it is 2. In general, the number of primes above
p is never greater than n = [L : K], and if we count with primes with “multiplicty” and “weight” it
will always be n. Multiplicity is easy to imagine: if [L : K] = 2 and p = P2 then it makes sense
to count P two times—technically this multiplicity is called the ramification index (or ramification
degree). There is only one prime that is ramified in the extension Q(i)/Q, namely 2Z[i] = (1 + i)2.

The notion of some primes being “weighted” is a little more subtle, but it can obviously happen
that p = P, i.e., a prime p of K remains prime (or is inert) in L, i.e., pOL = P is prime in L.
If we go back to Example 2.1.1, half of the primes in Q are inert in Q(i), the ones ≡ 3 mod 4,
i.e., the primes not sums of 2 squares. One way to differentiate the case of inert and “split” primes
in this example is the following. For split primes (p ≡ 1 mod 4), we have pOL = pOL = P1P2,
then [OL : Pi] = N(Pi) = p (this also holds for the ramified case of p = 2), but for inert primes
(p ≡ 1 mod 3), then P = pOL = pOL is prime in L and we have [OL : P] = N(P) = NL/K(p) = p2.

Hence, if we think of the exponent of p in N(P) = [OL : P] as the “weight” of P, then we can
say the weighted sum of the primes above p (with multiplicity) is always 2, at least in Example
2.1.1. In general, when the base field K �= Q, this definition of weight needs to be appropriately
modified, and we give the formal definitions of the appropriate multiplicity (ramification index) and
weight (inertial degree) below.

Exercise 2.5. Suppose P ∩OK = p. Show the ring embedding OK �→ OL yields a field embedding
OK/p �→ OL/P. In other words, the finite field OL/P is an extension of OK/p.

Definition 2.1.5. Let p be a prime of K. Suppose the prime ideal factorization of pOL is p =
�

Pei
i

where each Pi is distinct. The ramification index of Pi over p is e(Pi|p) = ei and the inertial

degree of Pi over p is f(Pi|p) = fi = [OL/Pi : OK/p].
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This definition of inertial degree is really the natural generalization of the “weight” of P we
suggested in the case of Q(i)/Q (see also lemma below). The previous exercise guarantees it makes
sense. For instance, if K = Q, then and P = pOL is prime in L, then f(P|(p)) = [OL/pOL : Z/pZ].
Now OL/pOL must be the finite field of order N(pOL) = NL/Q(p) = pn where n = [L : K], which
has degree n over Z/pZ, so the inertial degree is f(P|(p)) = n.

The above definition of inertial degree, is the standard one, but it is clearly equivalent to the
following form, which will be useful to us.

Lemma 2.1.6. The inertial degree fi = f(Pi|p) satisfies N(Pi) = N(p)fi.

Proof. We know OK/p is a finite field of some order, say q = N(p). By the exercise above OL/P is
an extension of OK/p, and the order of this extension field is qfi = N(Pi) by the definition of the
inertial degree. Hence N(p)fi = N(P).

Theorem 2.1.7. (The fundamental identity) With the notation in the definition,
�

eifi = n = [L : K].

For simplicity, we will omit some details of the proof when K �= Q.

Proof. Note
N(pOL) =

�
N(Pi)

ei =

�
N(p)

eifi ,

by the previous lemma. Then the theorem follows from the statement that N(pOL) = N(p)n.
This is true but not entirely obvious—one must check some details. However in our main case of

interest, which is K = Q, it is particularly simple, and in the interest of time and simplicity we will
restrict to when K = Q. Then p = (p) for some p ∈ N and N(pOL) = N(pOL) = NL/K(p) = pn.

Hence if pOL =
�

Pei
i (with each Pi distinct), the number of Pi lying above p is at most

n = [L : K], and is exactly n if we count multiplicities ei’s and “weights” fi’s. Now let’s give a
couple names for different ways in which p (i.e., pOL) can factor in OL.

Definition 2.1.8. Write pOL =
�g

i=1 Pei
i (with each Pi distinct). If ei > 1 for some i, we say p

ramifies in L. Otherwise, we say p is unramified in L.
If g > 1, i.e. there is more than one prime of L above p, then we say p is split in L. If g = 1,

i.e. there is only one prime of L above p, we say p is nonsplit in L.
If g = n, i.e. pOL = P1P2 · · ·Pn, then we say p is totally split (or splits completely) in L.

If g = 1 and e1 = 1, i.e. if pOL = P1, then we say p is inert (or remains prime) in L.

Note by the fundamental identity, if p is totally split in L, then ei = fi = 1 for each i. Similarly
if p is inert in L then f(P|p) = n where P = pOL. In particular if p is totally split or inert in
L, then it is unramified. We will see shortly that ramification is a special phenomenon which only
happens for finitely many primes.

We now give a couple of simple consequences of the lemma and fundamental identity.

Corollary 2.1.9. Let p be a prime ideal of K which lies above a prime p ∈ N. Then N(p) = pk for
some 1 ≤ k ≤ [K : Q].

Proof. It follows from the lemma above (or the argument before with the base field being Q), that
N(p) = pf(p|(p)). We know k = f(p|(p)) ≤ n by the fundamental identity.
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Knowing this is useful in determining whether an ideal is prime or not, and in determining how
a prime of Q splits in K. A consequence of this (without requiring the bound on k) is the fact that
an ideal of K divides (the ideal generated by) its norm. Recall we mentioned this result can be used
to prove that the class number of K is finite (see Lemma 1.6.6.

Corollary 2.1.10. Let I be an ideal of K and m = N(I). Then I|mOK .

Proof. Write I =
�

pi where the pi’s are (not necessarily distinct) prime ideals of K. Then m =

N(I) =
�

N(pi). By the previous corollary, we can write N(pi) = pfi
i for some fi where pi|pi. In

particular pi ⊇ piOK ⊇ pfi
i OK . Hence

I =

�
pi ⊇

�
p

fi
i OK = mOK .

Now one might ask if all primes of L above p have the same ramification index and inertial
degree. This is not true in general, but it is true if we pass to the Galois closure of L. Precisely, we
have the following.

Theorem 2.1.11. Suppose L/K is Galois and write p = Pe1
1 · · ·P

eg
g where the Pi’s are distinct

prime ideals of L. Then Gal(L/K) acts transitively on P1, . . . ,Pg. In particular e1 = e2 = · · · = eg

and f1 = f2 = · · · = fg. In this case, if we set e = e1 and f = f1, we have

pOL = Pe
1P

e
2 · · ·P

e
g

and the fundamental identity becomes
n = efg.

Proof. Let σ ∈ Gal(L/K) and P|p. Since L/K is Galois, σ(P) ⊆ OL. It follows immediately from
the definitions that σ(P) is an ideal of OL and σ(P) is prime. Note if x ∈ p, then σ(x) = x since
x ∈ OL. Thus P ⊇ p implies σ(P) ⊇ p, i.e., σ(P)|p. This implies Gal(L/K) acts on P1, . . . ,Pg.

Now we want to show this action is transitive. Suppose it is not, i.e., suppose P,P�|p but
P� �= σ(P) for any σ ∈ Gal(L/K). By the Chinese Remainder Theorem (for general rings) there is
an x ∈ OL such that

x ≡ 0 mod P�, x ≡ 1 mod σ(P) for all σ ∈ Gal(L/K).

Now y = NL/K(x) =
�

σ(x) ∈ P� ∩ OK = p. On the other hand P � (y) =
�

(σ(x)) since no
σ(x) ∈ P. But this means y �∈ p = P ∩OK , a contradiction.

This shows Gal(L/K) acts transitively on P1, . . . ,Pg. On the other hand, Gal(L/K) fixes
pOL = Pe1

1 Pe2
2 · · ·P

eg
g , so all the ramification indices ei are the same by uniqueness of prime ideal

factorization. Also, because P1, . . . ,Pg are Galois conjugates of each other, they all have the same
norm. Hence the all the inertial degrees fi are the same. The restatement of the fundamental
identity is immediate.

When L/K is Galois, we say the ideals σ(P) are conjugates of P.
We remark that just like one can define the norm of elements from L to K, one can define the

norm of ideals from L to K. Precisely, if A is an ideal of L, then the norm from L to K of A is

NL/K(A) =

�

σ∈Gal(L/K)

σ(A) ∩OK .
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Of course, this norm is an ideal, not a number, but remember that ideals are a sort of generalization
of numbers. One can show this satisfies various nice properties, and thus it can be useful like the
usual norm is useful.

Exercise 2.6. Suppose L/K is Galois.
(a) Suppose P is a prime of L lying above p, a prime of K. Let f = f(P|p). Show NL/K(P) =

pf .
(b) Show NL/K(AB) = NL/K(A)NL/K(B) for any ideals A,B of OL.
(c) Let A be an ideal of L with norm n = N(A) = |OL/A|. Show NL/Q(A) = (n). In other

words, the notion of an “ideal-valued norm” from L to K agrees with the original definition of the
integer-valued norm when K = Q (identifying the principal ideal (n) with the integer n).

2.2 Splitting in quadratic fields

In this section, we will let K = Q(
√

d) be a quadratic field. As usual we will assume d �= 1 is
squarefree. Further p will denote a prime (element) of Z and p will denote a prime (ideal) of OK .

In this case, the splitting of p (i.e., of pZ) in K is particularly simple. By the fundamental
identity there are at most 2 prime ideals of K lying above p (i.e., pZ), counting multiplicity. Hence
either p is inert in K, i.e., pOK is a prime ideal of OK , or pOK = p1p2 where p1 and p2 are prime
ideals of OK . When p1 = p2, p is ramified in OK , and when p1 �= p2, p splits in OK . Note that
since K is quadratic, p splitting and p splitting completely are one and the same.

Let ∆ = ∆K be the discriminant of K. Recall ∆ = d if d ≡ 1 mod 4 and ∆ = 4d if d ≡
2, 3 mod 4.

Let
�
a
p

�
denote the Kronecker symbol mod p. If p is odd,

�
a
p

�
is the ordinary Legendre symbol

define for any a ∈ Z, i.e.,
�
a
p

�
= 1 when gcd(a, p) = 1 and a is a square mod p,

�
a
p

�
= −1 when

gcd(a, p) = 1 and a is a nonsquare mod p, and
�
a
p

�
= 0 when p|a. If p = 2, we set

�
a

2

�
=






0 4|a

1 a ≡ 1 mod 8

−1 a ≡ 5 mod 8

undefined a �≡ 0, 1 mod 4.

This is an extension of the Legendre symbol where we have allowed p = 2 on the bottom, and p|a
for p odd. Note the definition for p = 2 satisfies

�
a

2

�
=

�
2

a

�

whenever a ≡ 0, 1 mod 4. Since the squares mod 8 are 0, 1, 4, the Kronecker symbol mod 2 detects
whether an a ≡ 0, 1, mod 4 is a square mod 8. The problem with a �≡ 0, 1 mod 4, is one cannot
extend the Kronecker symbol to integer values for such a so that it is multiplicative in a. However,
this is fine for us, since we only want that

�
∆
p

�
is defined for any prime p ∈ N, which it is since

∆ ≡ 0, 1 mod 4. The utility of this definition is apparent from the following result on the splitting
of p in K.

Theorem 2.2.1. Let p ∈ N be prime.
(i) If

�
∆
p

�
= 0 then p is ramified in K.
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(ii) If
�
∆
p

�
= 1 then p is split in K.

(iii) If
�
∆
p

�
= −1 then p is inert in K.

Note this say the primes with ramify in K are precisely the ones dividing ∆. In particular, there
are finitely many.

Proof. Let p be a prime of K lying above p. Then p is a subgroup of OK which is free of rank 2 over
Z. In particular, p is generated (as an ideal) by at most 2 elements of OK . We may take one of them
to be p, and write p = (p, π) for some π ∈ OK . Write π =

a+b
√

d
2 . Further, since N(p)|NK/Q(π) we

have p|NK/Q(π) =
a2−db2

4 , so a2 ≡ db2 mod p (in fact, mod 4p).
We first prove the contrapositive of (iii). Suppose pOK is not inert and p is odd. Then p �= pOK ,

so p � π, i.e., a and b are not both divisible by p. This implies b �≡ 0 mod p. Let b−1 such that
b−1b ≡ 1 mod p. Then a2 ≡ db2 mod p implies (ab−1)2 ≡ d mod p, i.e., d is a square mod p so
either

�
d
p

�
= 1 or 0, according to whether p � d or p|d. Since ∆ = d or ∆ = 4d,

�
d
p

�
�= −1 implies�

∆
p

�
�= −1. This proves (iii).
A similar argument works for p = 2.
Now suppose

�
∆
p

�
= 0 and p odd. Then

�
∆
p

�
=

�
d
p

�
, so p|d. In this case, we can take p = (p,

√
d).

To see this, observe that any element of p looks like

1

2
((x + y

√
d)p + (z + w

√
d)
√

d) =
1

2
(px + dw + (z + py)

√
d)

for some x, y, z, w ∈ Z. Since p|d, this means

OK � (p,
√

d) =

�
1

2
(px + y

√
d) : x, y ∈ Z

�
∩OK � pOK .

Hence p = (p,
√

d) lies above p. Thus pOK = pp where p is the conjugate ideal of p in K, but
p = (p,−

√
d) = p, so p is ramified in K.

The case of
�
∆
p

�
= 0 and p = 2 is an exercise below.

Now assume
�
∆
p

�
= 1 and p odd, so that

�
∆
p

�
=

�
d
p

�
= 1. Let a ∈ Z be such that a2 ≡ d mod p.

Note p � a since p � d. We claim we can take p = (p, a +
√

d). Then the conjugate ideal is
p = (p, a−

√
d). It is clear thatp, p � pOK , so it suffices to show p �= OK . To see this, observe that

pp = (p2, pa + p
√

d, pa− p
√

d, a2
− d) ⊆ pOK .

Hence pOK = pp (and p, p are primes of K). It remains to show p �= p. If p = p, then we would
have 2a = a+

√
d−a−

√
d ∈ p∩Z = pZ, which is impossible since p � 2a. This shows p splits in K.

Suppose
�
∆
p

�
= 1 and p = 2. Then ∆ ≡ 1 mod 8. Then as in the p odd case one shows one can

take p = (2, 1+
√

d
2 ), p �= p and pp = 2OK .

Exercise 2.7. Suppose
�
∆
2

�
= 0. Show p = (2, π) is a proper ideal of K containing 2OK , where

π =
√

d or 1+
√

d according to whether d is even or odd. Use this to verify (i) in the above theorem
for p = 2.

Exercise 2.8. Let K = Q(
√
−5). Determine which primes of Q ramify in K and which are

unramified. Then determine which primes of Q split completely in K and which are inert.
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Note that in the course of the proof of the above theorem, we were able to explicitly describe
the prime ideals of K lying above p. For convenient reference, we summarize this below.

Corollary 2.2.2. If p �= 2 is ramified in K, then p = (p,
√

d) is a prime of K lying above p. (For
p = 2 ramified in K, see Exercise 2.7 above.) If p �= 2 splits in K, then p = (p, a +

√
d) is a prime

of K lying above p for any a such that a2 ≡ d mod p. If 2 splits in K, then d ≡ 1 mod 4 and
p = (2, 1+

√
d

2 ) is a prime of K lying above 2.

The above theorem is very useful for many things. One application is to determining class
numbers and class groups of quadratic fields.

Example 2.2.3. Let K = Q(
√
−19). This has determinant ∆ = −19. By Lemma 1.6.4 (or

Minkowski’s bound, which is the same in this case), every ideal of OK is equivalent to one of norm
at most 2

π

√
19 ≈ 2.85. There is only ideal of norm one, namely OK , which is principal. Any ideal

of norm 2 must lie above 2 (Corollary 2.1.9), but
�
∆
2

�
= −1 since ∆ = −19 ≡ 5 mod 8, i.e., 2 is

inert in K. Hence there is no ideal of norm 2, which means the class number hK = 1.

Exercise 2.9. Show K = Q(
√
−15) has class number 2.

Exercise 2.10. Show K = Q(
√
−43) has class number 1.

Another application of the above theorem is to determining primes of the form x2 + ny2, which
we consider next.

2.3 Primes of the form x2 + ny2

Recall that one of our motivating questions, both this semester and last semester, was to study
numbers of the form x2 + ny2. Any two number of the form x2 + ny2 have a product which is also
of the form x2 + ny2 by Brahmagupta’s composition law, so this question largely reduces to the
question of which primes p are of the form x2 + ny2.

It is clear that p = x2 + ny2 means p is reducible in the ring of integers of K = Q(
√
−n). For

simplicity, we assume n is a square free integer, and put d = −n, so K = Q(
√

d) which coincides
with the notation in the previous section. For the result below we will allow n to be negative,
because it is no extra work (it just involves including a ± sign), though our main interest is in
n > 0.

We will also assume n �= −1, because then K = Q. So the case of n = −1 is particularly simple,
as our question is: which primes are of the form p = x2−y2 = (x−y)(x+y). But this factorization
means (say for p > 0) that x − y = 1 so p = 2y + 1, i.e., all odd p > 0 are of the form x2 − y2.
Interchanging x and y also shows that any odd p < 0 is of the form x2 − y2.

Proposition 2.3.1. Let p be a prime of Z. If p = x2+ny2 for some x, y ∈ Z, then pOK = p1p2 where
p1 and p2 are (not necessarily distinct) principal prime ideals of OK . Conversely, if pOK = p1p2

where p1 and p2 are principal prime ideals of OK , then
(i) ±p is of the form x2 + ny2 if n ≡ 1, 2 mod 4;
(ii) ±4p is of the form x2 + ny2 if n ≡ 3 mod 4.

Proof. (⇒) As above, set d = −n to match with notation from the previous section. Suppose
p = x2 + ny2 = x2 − dy2 = (x + y

√
d)(x − y

√
d). Since p is squarefree, both x and y must be

nonzero so α = x + y
√

d and β = x − y
√
−d are nonzero nonunits of OK . Thus pOK = (α)(β)
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is the prime ideal factorization of pOK . (The ideals (α) and (β) are prime either by the argument
that NK/Q(α) = NK/Q(β) = ±p or using the fundamental identity to count the prime ideals in the
factorization of pOK).

(⇐) Suppose pOK is a product of two principal prime ideals p1 = (α) and p2 = (β). Since
the ideals (α) and (β) are conjugate, we may assume α and β are conjugate, i.e., α = x + y

√
d,

β = x−y
√

d for some x, y ∈ Q. Then NK/Q(α) = NK/Q(β) = p, and the factorization pOK = (α)(β)

implies p = uαβ = u(x2 − dy2) for some unit u of OK . Since x2 − dy2 ∈ Z, we must have u = ±1.
If d ≡ 2, 3 mod 4, then we may assume x, y ∈ Z so we have shown (i). If d ≡ 1 mod 4, then

x, y ∈ 1
2Z and (ii) follows.

Note that we can rephrase the n ≡ 1, 2 mod 4 case as follows: ±p = x2 +ny2 if and only if pOK

is a product of 2 (not necessarily distinct) principal ideals in OK .
When n > 0, the ± sign here is moot: negative p are never of the form x2 + ny2, but for n < 0

the distinction of whether p or −p is of the form x2 +ny2 is somewhat more subtle. Our main focus
is when n > 0, so we will not worry about this now, but it can be treated via the general theory
of binary quadratic forms. We will discuss binary quadratic forms in Part II, but again our focus
there will be mostly on the “positive” cases.

One can make a similar if and only if statement when n ≡ 3 mod 4.

Exercise 2.11. Suppose n ≡ 3 mod 4. Show pOK = p1p2 for two (not necessarily distinct) prime
ideals p1, p2 of OK if and only if ±4p = x2 + ny2 for some x, y ∈ Z.

To see that these two cases are necessary, look at K = Q(
√
−11). Then p = 3 =

1+
√
−11

2
1−

√
−11

2
so p splits in OK , but 3 �= x2 + 11y2 for x, y ∈ Z. Of course 12 = 4 · 3 = 12 + 11 · 12.

We remark that one could treat the n ≡ 3 mod 4 and the n ≡ 1, 2 mod 4 uniformly as follows:
±p = x2 + ny2 if and only if pZ[

√
−n] is a product of two proper principal ideals of Z[

√
−n].

However the issue with this is that the ideals of Z[
√
−n] (when n ≡ 3 mod 4) are more difficult to

study than OK , e.g., the prime ideal factorization theorem does not hold for Z[
√
−n].

Now let’s see how we can use this to give alternative (simpler) proofs of some of our main results
from last semester. New cases are contained in the exercises. Below p denotes a prime number in
N and x, y ∈ Z.

Corollary 2.3.2. (Fermat’s two square theorem) We can write p = x2 +y2 if and only if p = 2

or p ≡ 1 mod 4.

Proof. By the proposition, p = x2 + y2 if and only if p is a product of two (not necessarily distinct)
principal ideals in Q(i). (−p cannot be a sum of 2 squares so the ± in the proposition is not an
issue here.) Since we know the class number of Q(i) is 1, we in fact have p = x2 + y2 if and only if
p splits or ramifies in Q(i).

Here ∆ = ∆Q(i) = −4, so by Theorem 2.2.1, p = x2 + y2 if and only if p = 2 (the ramified
case) or

�
∆
p

�
=

�
−4
p

�
=

�
−1
p

�
= 1. But the first supplementary law to quadratic reciprocity tells us�

−1
p

�
= 1 if and only if p ≡ 1 mod 4.

Exercise 2.12. We have p = x2 + 2y2 if and only if p = 2 or p ≡ 1, 3 mod 8.

We proved this in Chapter 9 last semester, but you should give a simpler argument using the
above results. Then we left the case of x2 + 3y2 as an exercise in Chapter 9, which you may recall
was considerably more challenging than the x2 +2y2 case. In fact, we still haven’t made things any
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easier on ourselves for this case since this corresponds to d ≡ 1 mod 4 above. It may be worthwhile
to see what the issue is, so let’s go through this.

Suppose p = x2 + 3y2. Then by the above proposition pOK is a product of two principal ideals
of OK , where K = Q(

√
−3). In this case hK = 1, so every ideal is principal. Hence p either splits

or ramifies in OK which means
�
∆
p

�
=

�
−3
p

�
=

�p
3

�
= 0 or 1, i.e., p = 3 or p ≡ 1 mod 3. Clearly

p = 3 is of the form x2 + 3y2. It remains to show if p ≡ 1 mod 3, then p = x2 + 3y2. By this
same computation of

�
∆
p

�
, if p ≡ 1 mod 3, the p splits into two (prinicipal) ideals of K. However

since d = −n ≡ 1 mod 4, the above proposition only tells us that 4p = x2 + 3y2. For instance
4 ·7 = 52 +3 ·12. It is not clear how to conclude that we must have p = (x�)2 +3(y�)2 for some x�, y�,
though it is true. Roughly, one might like to use Brahmagupta’s composition law (the product of
two numbers of the form x2 +ny2 is again of this form—this is simple, but not pretty, computation)
in reverse: 4 = 12 +3 ·12 and 4p are both of the form x2 +3y2, so their quotient p = 4p/4 should be.
We will see that one can more or less do just this using Gauss’s theory of binary quadratic forms
in Part II. Hence for now, we will forget about the case n ≡ 3 mod 4 (i.e., d ≡ 1 mod 4).

Corollary 2.3.3. We have p = x2 + 5y2 if and only if p = 5 or p ≡ 1, 9 mod 20.

Proof. Let K = Q(
√
−5) so ∆ = ∆K = −20. Only two primes p ramify in K, p = 2 and p = 5.

Clearly 2 �= x2 +5y2 and 5 = x2 +5y2, so from now on, assume p is unramified. (By the proposition
above, this corresponds to the fact that 2OK is the square of the nonprincipal ideal (2, 1 +

√
−5)

and 5OK is the square of the principal ideal (
√
−5).)

Note that p is split in K if and only if
�
∆
p

�
=

�
−5
p

�
= 1, i.e., if and only if p ≡ 1, 3, 7, 9 mod 20.

(⇒) If p = x2 + 5y2, then p splits in K by the proposition, so p ≡ 1, 3, 7, 9 mod 20. On the
other hand, x2 + 5y2 ≡ x2 + y2 ≡ 0, 1, 2 mod 4 so p �≡ 3, 7 mod 20. (Alternatively, one can look at
the squares mod 20.)

(⇐) Suppose p ≡ 1, 9 mod 20 but p �= x2 + 5y2. The congruence conditions imply pOK = pp

where p is a prime ideal of K, and p �= x2 + 5y2 means p is nonprincipal. Since hK = 2, this means
p ∼ (2, 1 +

√
−5), i.e., p = α(2, 1 +

√
−5) for some α ∈ K.

Write α =
a
c +

b
d

√
−5 for some a, b, c, d ∈ Z. Note that 2α and (1+

√
−5)α must lie in OK . Since

2α ∈ OK , c|2 and d|2 so we can write α =
a+b

√
−5

2 (replacing a and b with 2a and 2b if necessary).
Then one has

(2)p = (a + b
√
−5)(2, 1 +

√
−5).

Taking norms yields
2p = a2

+ 5b2.

Reducing this equation mod 5 yields a2 ≡ 2, 3 mod 5 (since p ≡ 1, 4 mod 5), which is a contradic-
tion.∗

For a slightly different argument, see last semester’s Chapter 12 Notes. One could simplify this
proof if we knew we could use Brahmagupta’s composition law in reverse (see above remarks on
x2+3y2). In particular, for the argument in the (⇐) direction, p ∼ (2, 1+

√
−5) means (a+b

√
−5)p =

(c + d
√
−5)(2, 1 +

√
−5) for some a, b, c, d ∈ Z[

√
−5]. Taking norms gives p(a2 + 5b2) = 2(c2 + 5d2).

Since 2 is not of the form x2 + 5y2, one would like to conclude p is not either, but it is not obvious
how to make this argument work. We will essentially be able to via genus theory in Part II.

∗Thanks to Victor Flynn for correcting an earlier argument.
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Before moving on, let us observe there is another interesting characterization of which primes
are of the form x2 + 5y2. Suppose n > 0 and n ≡ 1, 2, mod 3. As before, set K = Q(

√
−n). When

hK = 1, the above proposition and the theorem if that a prime p is of the form x2 +ny2 if and only
if

�
∆
p

�
= 0 or 1. By quadratic reciprocity, one can then essentially say an prime p is of the form

x2 +ny2 if and only if p is a square mod ∆. (One can formalize this with a different extension of the
Legendre symbol called the Jacobi symbol—we won’t go through the details, but you can observe
it in the simplest case: p �= 2 is of the form x2 + y2 if and only if p is a square mod ∆Q(i) = −4.)

When hK = 2 (or larger), the problem is the quadratic residue symbol can essentially only
detect 2 things—whether p is split or inert (or ramified). But we need to distinguish when a p splits
into principal ideals and when p splits into nonprincipal ideals. Check the following criterion for
x2 + 5y2.

Exercise 2.13. Let K = Q(
√
−5), and p ∈ N be a rational prime. Show p = x2 + 5y2 if and only

if
�
∆
p

�
= 1 and p is a square mod ∆.

One can treat other forms x2 + ny2 similar to x2 + 5y2 when the class number of Q(
√
−n) is 2.

Exercise 2.14. Determine all primes of the form x2 + 6y2.

When the class number of K = Q(
√
−n) is larger than 2, determining the primes of the form

x2 + ny2 can get considerably more complicated, and the solution will depend upon the structure
of the class group ClK . In general, primes of the form x2 + ny2 are not characterized just by simple
congruence conditions (though it always will be if ClK � (Z/2Z)r). We will explore some of the
issues involved in Part II.

2.4 General splitting results

In this section, let L/K be an extension of number fields, let p denote a prime of K and P denote
a prime of L. If pOL =

�
Pei

i with the Pi’s distinct prime ideals of L, then fi denotes the inertial
degree fi = f(Pi|p).

In Section 2.2, we saw that it is simple to understand completely the way a prime p splits in
L when K = Q and L is quadratic. (It is also not much harder when K is arbitrary and L/K
is quadratic.) In general things are not so simple, but there are some general fundamental results
which describe the splitting of primes in L/K. We will not give complete proofs in both the interest
of time and simplicity.

Note that OK [α] is a free OK-module of rank n = [L : K], so it has finite index (either as an
abelian group or OK-module) in OL. Thus OL/OK [α] is a finite abelian group.

Theorem 2.4.1. Write L = K(α) and let q(x) ∈ OK [x] be the minimum polynomial for α over
K. Suppose p is a prime of Z such that p � |OL/OK [α]| and p is a prime ideal of K lying above p.
Write

q(x) ≡ q1(x)
e1q2(x)

e2 · · · qg(x)
eg mod p

where the qi’s are distinct irreducible polynomials (of positive degree) in the finite field OK/p. Then

pOL = Pe1
1 Pe2

2 · · ·P
eg
g

for distinct prime ideals P1, . . . ,Pg of OL such that fi = f(Pi|p) = deg qi(x).
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This theorem provides a way to determine how prime ideals p of K split in L. For technical
reasons, a finite number of primes p are excluded from this result.

Proof. (Sketch.) One first shows

OL/pOL � (OK [α])/(pOK [α]) � (OK/p)[x]/(q(x)),

where q(x) is the image of q(x) in (OK/p)[x]. The first isomorphism requires that pOL + F = OL

where the conductor F is the largest ideal of OL contained in OK [α]. This is where the technicality
that p � |OL/OK [α]| comes in. The second isomorphism is straightforward.

Then one can use the Chinese Remainder Theorem (for general rings, whose proof is essentially
the same as for Z),

(OK/p)[x]/(q(x)) �

g�

i=1

(OK/p)[x]/(qi(x)
ei),

where qi(x) is the image of qi(x) in (OK/p)[x].

Exercise 2.15. Suppose K = Q and L = Q(
√
−5). Determine |OL/OK [α]| where α =

√
−5.

Verify the above theorem in this case.

Theorem 2.4.2. Consider the extension K/Q. Then a prime (p) of Q ramifies in K if and only if
p|∆K .

In particular, only finitely many primes of Q ramify in K.

Corollary 2.4.3. Let L/K be an extension of number fields. If a prime p of K ramifies in L, then
p lies above a prime of N dividing ∆L. In particular, only finitely many primes p of K ramify in L.

Exercise 2.16. Deduce this corollary from the previous theorem.
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