Number Theory Fall 2009 Homework 9

Due: Wed. Nov. 4, start of class

Exercise 7.1. Show $\zeta_3^2 + \zeta_3 + 1 = 0$. Using this, deduce that $\mathbb{Z}[\zeta_3]$ is closed under multiplication. (Note the set of integer linear combinations of 1 and α , $\{a + b \cdot \alpha | a, b \in \mathbb{Z}\}$, is not always closed under multiplication. For example when $\alpha = \sqrt[3]{2}$ or $\alpha = e^{2\pi i/5}$, α^2 is not a linear combination of 1 and α .)

Exercise 7.2. For $\alpha \in \mathbb{Z}[\zeta_3]$, let $\overline{\alpha}$ be the complex conjugate of α , and define the norm by $N(\alpha) = |\alpha|^2 = \alpha \overline{\alpha}$. (The norm of $a + b\zeta_3$ is not $(a + b\zeta_3)(a - b\zeta_3)$.) Show $\overline{\alpha} \in \mathbb{Z}[\zeta_3]$ for any $\alpha \in \mathbb{Z}[\zeta_3]$. Compute $\overline{\zeta}_3$, $N(\zeta_3)$ and $N(1 + \zeta_3)$. Write down a formula for $N(a + b\zeta_3)$ where $a, b \in \mathbb{Z}$.

Exercise 7.3. Determine the units of $\mathbb{Z}[\zeta_3]$ (the elements of norm 1).

Exercise 7.4. Exercise 7.4.1. This resolves the non-unique factorization of $4 = 2 \cdot 2 = (1 + \sqrt{-3})(1 - \sqrt{-3})$ in $\mathbb{Z}[\sqrt{-3}]$ by going to $\mathbb{Z}[\zeta_3]$.

Exercise 7.5. What are the possible remainders mod $\pi = \sqrt{-3}$ in $\mathbb{Z}[\zeta_3]$? (Hint: they will be the elements whose norm is less than that of π .) Show that for any $z, x \in \mathbb{Z}$ (or even $\mathbb{Z}[\zeta_3]$) $z - x \equiv z - x\zeta_3 \equiv z - x\zeta_3^2$, which we need in the proof of Fermat's Last Theorem for n = 3. (If you need at hint, look at p. 131.)

Exercise 7.6. Fermat's Last Theorem says $x^n + y^n = z^n$ has no solutions in \mathbb{N} if n > 2. Show that if d|n then a solution to $x^n + y^n = z^n$ give a solution to $x^d + y^d = z^d$. Deduce that Fermat's Last Theorem is true for $n \equiv 0 \mod 3$. Also deduce that to prove Fermat's Last Theorem, it suffices to prove it for n = 4 and n = p where p is any odd prime.

Exercise 8.1. Let p be an odd prime. We say a is a square or quadratic residue mod p if $a \equiv x^2 \mod p$ for some x. Prove there are $\frac{p+1}{2}$ distinct squares mod p.

Exercise 8.2. Let p be an odd prime. Show $x^2 + y^2 \equiv -1 \mod p$ for some $x, y \in \mathbb{Z}$. (Hint: use the previous exercise and the pigeonhole principle.)