Number Theory Fall 2009 Homework 7 Due: Wed. Oct. 21, start of class

6.2 Divisibility and primes in $\mathbb{Z}[i]$ and \mathbb{Z}

Exercise 6.5. Factor 17 and 53 in $\mathbb{Z}[i]$. (Exercise 6.2.4.)

6.3 Conjugates

Exercise 6.6. Suppose $p \in \mathbb{N}$ is prime in \mathbb{Z} but factors as $p = \alpha\beta$ where α, β are non-units in $\mathbb{Z}[i]$. Show $\beta = \overline{\alpha}$.

6.4 Division in $\mathbb{Z}[i]$

Exercise 6.7. Use the Euclidean algorithm to determine a gcd for $\alpha = 5$ and $\beta = 3 + 4i$ in $\mathbb{Z}[i]$.

Exercise 6.8. Let $\pi, \beta \in \mathbb{Z}[i]$ and u be a unit of $\mathbb{Z}[i]$. Show that $\pi | u\beta \iff \pi | \beta$.

Exercise 6.9. Suppose π and π' are primes of $\mathbb{Z}[i]$. Show $\pi|\pi'$ implies $\pi = u\pi'$ where u is a unit of $\mathbb{Z}[i]$.

Exercise 6.10. Let u be a unit in $\mathbb{Z}[i]$. Show π is prime in $\mathbb{Z}[i]$ if and only if $u\pi$ is prime in $\mathbb{Z}[i]$.

Exercise 6.11. Suppose α is prime in $\mathbb{Z}[i]$. Show $N(\alpha) = p$ or $N(\alpha) = p^2$ for some prime p of \mathbb{N} .