Number Theory Fall 2009 Homework 7

Due: Wed. Oct. 21, start of class

6.2 Divisibility and primes in $\mathbb{Z}[i]$ and \mathbb{Z}

Exercise 6.5. Factor 17 and 53 in $\mathbb{Z}[i]$. (Exercise 6.2.4.)

6.3 Conjugates

Exercise 6.6. Suppose $p \in \mathbb{N}$ is prime in \mathbb{Z} but factors as $p=\alpha \beta$ where α, β are non-units in $\mathbb{Z}[i]$. Show $\beta=\bar{\alpha}$.

6.4 Division in $\mathbb{Z}[i]$

Exercise 6.7. Use the Euclidean algorithm to determine a gcd for $\alpha=5$ and $\beta=3+4 i$ in $\mathbb{Z}[i]$.
Exercise 6.8. Let $\pi, \beta \in \mathbb{Z}[i]$ and u be a unit of $\mathbb{Z}[i]$. Show that $\pi|u \beta \Longleftrightarrow \pi| \beta$.
Exercise 6.9. Suppose π and π^{\prime} are primes of $\mathbb{Z}[i]$. Show $\pi \mid \pi^{\prime}$ implies $\pi=u \pi^{\prime}$ where u is a unit of $\mathbb{Z}[i]$.

Exercise 6.10. Let u be a unit in $\mathbb{Z}[i]$. Show π is prime in $\mathbb{Z}[i]$ if and only if $u \pi$ is prime in $\mathbb{Z}[i]$.
Exercise 6.11. Suppose α is prime in $\mathbb{Z}[i]$. Show $N(\alpha)=p$ or $N(\alpha)=p^{2}$ for some prime p of \mathbb{N}.

