Number Theory Fall 2009 Homework 5 NOT TO BE TURNED IN

Instructions: Here are some additional problems from Chapter 3. While you do not need to turn these in, I recommend doing them for general understanding of the material. Additionally, you may as well expect a problem or two similar to Exercises 3.17–3.19 on the Exam.

3.7 Quadratic Diophantine equations

Exercise 3.16. Exercise 3.7.1.

Exercise 3.17. Show that if $p = x^2 + 4y^2$, then p is of the form 4n or 4n + 1.

Exercise 3.18. Using congruences, prove that $k^3 + 2k$ is always divisible by 3.

Exercise 3.19. Show that if $p = x^3 + y^3$, then p is not of the form 9n + 4 or 9n + 5.

3.8 *Primitive roots

Proposition 3.16. If 1/n is strictly periodic with period length r, then 10 has order r in $(\mathbb{Z}/n\mathbb{Z})^{\times}$.

Exercise 3.20. Without dividing, determine the period length of 1/11. (For p > 5, we have gcd(p, 10) = 1, and one can show 1/p will be strictly periodic, so you may use the above proposition.) Check what the decimal expansion is on a calculator.