Number Theory Fall 2009 Homework 5 NOT TO BE TURNED IN

Instructions: Here are some additional problems from Chapter 3. While you do not need to turn these in, I recommend doing them for general understanding of the material. Additionally, you may as well expect a problem or two similar to Exercises 3.17-3.19 on the Exam.

3.7 Quadratic Diophantine equations

Exercise 3.16. Exercise 3.7.1.
Exercise 3.17. Show that if $p=x^{2}+4 y^{2}$, then p is of the form $4 n$ or $4 n+1$.
Exercise 3.18. Using congruences, prove that $k^{3}+2 k$ is always divisible by 3 .
Exercise 3.19. Show that if $p=x^{3}+y^{3}$, then p is not of the form $9 n+4$ or $9 n+5$.

3.8 *Primitive roots

Proposition 3.16. If $1 / n$ is strictly periodic with period length r, then 10 has order r in $(\mathbb{Z} / n \mathbb{Z})^{\times}$.
Exercise 3.20. Without dividing, determine the period length of $1 / 11$. (For $p>5$, we have $\operatorname{gcd}(p, 10)=1$, and one can show $1 / p$ will be strictly periodic, so you may use the above proposition.) Check what the decimal expansion is on a calculator.

