Number Theory Fall 2009
 Homework 13
 Due: Wed. Dec. 9, start of class

Throughout, K denotes a number field.

11.4 PID's 'n ED's

Exercise 11.7. Suppose R is a Euclidean domain with absolute value $|\cdot|$. Let $a \in R$ such that $|a|=1$. Show $(a)=R$.

11.6 Quotient rings

Exercise 11.8. Let $R=\mathbb{Z}[\sqrt{-5}]$ and consider the ideals $\mathcal{I}=(2)$, $\mathcal{J}=(1+\sqrt{-5})$ and $\mathfrak{p}=$ $(2,1+\sqrt{-5})$. Write down a set of representatives for $R / \mathcal{I}, R / \mathcal{J}$ and R / \mathfrak{p}. What are their norms? Show that \mathcal{I} and \mathcal{J} are not prime but \mathfrak{p} is.

12.2 Fractional ideals and the class group

Definition 12.1. Let K be a number field, and $\mathcal{I} \subseteq K$. If $a \mathcal{I}=\{a i: i \in \mathcal{I}\}$ is an ideal of \mathcal{O}_{K} for some nonzero $a \in \mathcal{O}_{K}$, we say \mathcal{I} is a fractional ideal of \mathcal{O}_{K}. Further if a \mathcal{I} is principal, we say \mathcal{I} is principal. Denote the set of nonzero fractional ideals of \mathcal{O}_{K} by $\operatorname{Frac}\left(\mathcal{O}_{K}\right)$, and the set of nonzero principal ideals by $\operatorname{Prin}\left(\mathcal{O}_{K}\right)$.

Exercise 12.1. Let $\mathcal{I}=(n)$ be a non-zero ideal of \mathbb{Z}. Check the fractional ideal $\mathcal{I}^{-1}=\frac{1}{n} \mathbb{Z}$ is indeed the inverse of \mathcal{I}, i.e., $\mathcal{I I}^{-1}=(1)=\mathbb{Z}$. Similarly, for any number field K and any non-zero principal ideal $\mathcal{I}=(\alpha)$ of \mathcal{O}_{K}, show $\alpha^{-1} \mathcal{O}_{K}$ is the inverse of \mathcal{I}, i.e., $\mathcal{I I}^{-1}=(1)=\mathcal{O}_{K}$.

Exercise 12.2. Let K be a number field. Show the principal fractional ideals of \mathcal{O}_{K} correspond to the elements of K, up to units.

Exercise 12.3. Check that \mathcal{O}_{K} is the identity element of $\operatorname{Frac}\left(\mathcal{O}_{K}\right)$, i.e., if \mathcal{I} is a fractional ideal of \mathcal{O}_{K}, show $\mathcal{O}_{K} \cdot \mathcal{I}=\mathcal{I}$.

Exercise 12.4. Let \mathcal{I}, \mathcal{J} be ideals of \mathcal{O}_{K}. Then $\mathcal{J} \mid \mathcal{I} \Longleftrightarrow \mathcal{J} \supseteq \mathcal{I} \Longleftrightarrow \mathcal{J}^{-1} \subseteq \mathcal{I}^{-1}$. (Hint: it's easy if you use Theorem 12.4 to multiply by inverses.) Note when $\mathcal{J}=\mathcal{O}_{K}$, this says $\mathcal{I}^{-1} \supseteq \mathcal{O}_{K}$.

12.3 Primes of the form $x^{2}+5 y^{2}$

Exercise 12.5. Use Fermat's 2 square theorem to determine the primes of the form $x^{2}+4 y^{2}$ (Exercise 12.8.1).

