Number Theory Fall 2009 Homework 13 Due: Wed. Dec. 9, start of class

Throughout, K denotes a number field.

11.4 PID's 'n ED's

Exercise 11.7. Suppose R is a Euclidean domain with absolute value $|\cdot|$. Let $a \in R$ such that |a| = 1. Show (a) = R.

11.6 Quotient rings

Exercise 11.8. Let $R = \mathbb{Z}[\sqrt{-5}]$ and consider the ideals $\mathcal{I} = (2)$, $\mathcal{J} = (1 + \sqrt{-5})$ and $\mathfrak{p} = (2, 1 + \sqrt{-5})$. Write down a set of representatives for R/\mathcal{I} , R/\mathcal{J} and R/\mathfrak{p} . What are their norms? Show that \mathcal{I} and \mathcal{J} are not prime but \mathfrak{p} is.

12.2 Fractional ideals and the class group

Definition 12.1. Let K be a number field, and $\mathcal{I} \subseteq K$. If $a\mathcal{I} = \{ai : i \in \mathcal{I}\}$ is an ideal of \mathcal{O}_K for some nonzero $a \in \mathcal{O}_K$, we say \mathcal{I} is a **fractional ideal** of \mathcal{O}_K . Further if $a\mathcal{I}$ is principal, we say \mathcal{I} is **principal**. Denote the set of nonzero fractional ideals of \mathcal{O}_K by $\operatorname{Frac}(\mathcal{O}_K)$, and the set of nonzero principal ideals by $\operatorname{Prin}(\mathcal{O}_K)$.

Exercise 12.1. Let $\mathcal{I} = (n)$ be a non-zero ideal of \mathbb{Z} . Check the fractional ideal $\mathcal{I}^{-1} = \frac{1}{n}\mathbb{Z}$ is indeed the inverse of \mathcal{I} , i.e., $\mathcal{I}\mathcal{I}^{-1} = (1) = \mathbb{Z}$. Similarly, for any number field K and any non-zero principal ideal $\mathcal{I} = (\alpha)$ of \mathcal{O}_K , show $\alpha^{-1}\mathcal{O}_K$ is the inverse of \mathcal{I} , i.e., $\mathcal{I}\mathcal{I}^{-1} = (1) = \mathcal{O}_K$.

Exercise 12.2. Let K be a number field. Show the principal fractional ideals of \mathcal{O}_K correspond to the elements of K, up to units.

Exercise 12.3. Check that \mathcal{O}_K is the identity element of $\operatorname{Frac}(\mathcal{O}_K)$, i.e., if \mathcal{I} is a fractional ideal of \mathcal{O}_K , show $\mathcal{O}_K \cdot \mathcal{I} = \mathcal{I}$.

Exercise 12.4. Let \mathcal{I}, \mathcal{J} be ideals of \mathcal{O}_K . Then $\mathcal{J}|\mathcal{I} \iff \mathcal{J} \supseteq \mathcal{I} \iff \mathcal{J}^{-1} \subseteq \mathcal{I}^{-1}$. (Hint: it's easy if you use Theorem 12.4 to multiply by inverses.) Note when $\mathcal{J} = \mathcal{O}_K$, this says $\mathcal{I}^{-1} \supseteq \mathcal{O}_K$.

12.3 Primes of the form $x^2 + 5y^2$

Exercise 12.5. Use Fermat's 2 square theorem to determine the primes of the form $x^2 + 4y^2$ (Exercise 12.8.1).