Number Theory Fall 2009 Homework 11 Due: Wed. Nov. 18, start of class

9.8 Proof of quadratic reciprocity

The following exercises are related to our proof of quadratic reciprocity.

Exercise 9.9. Let p, q be distinct odd primes. Determine the elements $x \in (\mathbb{Z}/pq\mathbb{Z})^{\times}$ such that $x^2 \equiv 1 \mod pq$. (Hint: think about the Chinese Remainder Theorem). Using this, prove that $\prod_{x \in (\mathbb{Z}/pq\mathbb{Z})^{\times}} x \equiv 1 \mod pq$ in the same way we proved Wilson's Theorem.

Exercise 9.10. As in the proof, set

$$P = \left\{ 1 \le x \le \frac{pq-1}{2} | \gcd(x, pq) = 1 \right\}.$$

Deduce from the previous exercise that $(\prod_{x \in P} x)^2 \equiv 1 \mod pq$.

[Note that if one knew $\prod_{x \in P} x \equiv \pm 1 \mod pq$, this would say $\prod_{x \in P} \alpha(x) \equiv \pm (1, 1) \mod (p, q)$, hence (3) would mean $(-1)^{\frac{q-1}{2}} \left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}} \left(\frac{p}{q}\right)$, which is not true. (In the previous exercise, you determined which elements square to 1, and it's not just ± 1 anymore.) As we see from (4), the actual determination of $\prod_{x \in P} \alpha(x)$ (even up to ± 1) is more complicated. This is an example of how working mod pq is more complicated than working mod p.]

Exercise 9.11. (Proof of Theorem 9.2) Let p > 3 be prime. (i) Show $p = x^2 + 3y^2$ implies $p \equiv 1 \mod 3$. (ii) Show $p = X^2 - XY + Y^2$ with $X \equiv Y \mod 2$ if and only if p is not prime in $\mathbb{Z}[\zeta_3]$. (iii) Find half-integers $a, b, c, d \in \frac{1}{2}\mathbb{Z}$ such that $X^2 - XY + Y^2 = x^2 + 3y^2$ where x = aX + bY, y = cX + dY. (iv) Deduce that $p = x^2 + 3y^2$ if and only if p is not prime in $\mathbb{Z}[\zeta_3]$. (v) Suppose $p \equiv 1 \mod 3$. Using quadratic reciprocity, show $p|m^2 + 3$ for some m. Conclude p is of the form $x^2 + 3y^2$.

10.2 Rings and fields

Exercise 10.1. Why are $\mathbb{Z}/4\mathbb{Z}$ and $\mathbb{Z}/6\mathbb{Z}$ not fields? What about $\mathbb{Z}[i]$?

Exercise 10.2. In the same way we determined $\mathbb{Z}[\sqrt{2}, \sqrt{3}] = \{a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} : a, b, c, d \in \mathbb{Z}\},$ determine what the rings $\mathbb{Z}[\sqrt{-2}, i]$ and $\mathbb{Z}[\sqrt[3]{2}]$ are, in terms of \mathbb{Z} -linear combinations of algebraic numbers. Similarly determine what $\mathbb{Q}(\sqrt{-2}, i)$ and $\mathbb{Q}(\sqrt[3]{2})$ are in terms of \mathbb{Q} -linear combinations of algebraic numbers. Prove at least one of your four answers, like we did in the example above. For the other three, you may just state the answer.

Exercise 10.3. Let R be a ring, and U be the subset of units. Show that U is a group under multiplication. What are the units of $R = \mathbb{Z}/n\mathbb{Z}$? What about $R = \mathbb{Z}[\sqrt{-n}]$ for $n \in \mathbb{N}$?

Exercise 10.4. Let R be a ring. Let u be a unit of R. Show u' is also a unit of R if and only if $u' \sim u$.

10.3 Algebraic integers

Definition 10.1. Let $\alpha \in \mathbb{C}$. We say α is an algebraic number of degree m > 0 if

$$\alpha^{m} + c_{m-1}\alpha^{m-1} + \dots + c_{1}\alpha + c_{0} = 0$$

for some $c_0, c_1, \ldots, c_m \in \mathbb{Q}$ with m > 0 minimal. If each $c_i \in \mathbb{Z}$, we say α is an algebraic integer. The polynomial $p(x) = x^m + c_{m-1}x^{m-1} + \cdots + c_1x + c_0$ is called the minimum polynomial of α .

Exercise 10.5. Show the definition of algebraic number and algebraic integer given above coincide with that in the text. Namely show that (i) α is an an algebraic number of degree m if and only if

$$a_m \alpha^m a_{m-1} \alpha^{m-1} + \dots + a_1 \alpha + a_0 = 0$$

for some $a_i \in \mathbb{Z}$ with m minimal; and (ii) α is an algebraic integer if and only if we may take $a_m = 1$.