Number Theory Fall 2009
 Homework 10

Due: Wed. Nov. 11, start of class

9.2 Statement of quadratic reciprocity

Exercise 9.1. Use quadratic reciprocity to determine for which primes p is 7 a square mod p.

9.3 Euler's criterion

Exercise 9.2. Show \square_{p} is a subgroup of $(\mathbb{Z} / p \mathbb{Z})^{\times}$. Show the map $\sigma:(\mathbb{Z} / p \mathbb{Z})^{\times} \rightarrow(\mathbb{Z} / p \mathbb{Z})$ given by $\sigma(x)=x^{2}$ is 2-to-1. Conclude the subgroup \square_{p} has index 2 in $(\mathbb{Z} / p \mathbb{Z})^{\times}$, i.e., $\left|\square_{p}\right|=\frac{p-1}{2}$.

Exercise 9.3. Explicitly write down the values of $(\dot{\bar{p}})$ for $p=7,11,13$. In each case, write down what the subgroup \square_{p} of $(\mathbb{Z} / p \mathbb{Z})^{\times}$is.

9.4 The value of $\left(\frac{2}{p}\right)$

Exercise 9.4. Let $a, b \in \mathbb{N}$. Show for p prime

$$
(a+b)^{p} \equiv a^{p}+b^{p} \bmod p
$$

9.5 The story so far

Exercise 9.5. Compute $\left(\frac{24}{61}\right)$, $\left(\frac{30}{61}\right)$, and $\left(\frac{31}{61}\right)$.

9.7 The full Chinese remainder theorem

Exercise 9.6. Let $\operatorname{gcd}(m, n)=1$ and $\alpha:(\mathbb{Z} / m n \mathbb{Z}) \rightarrow(\mathbb{Z} / m \mathbb{Z}) \times(\mathbb{Z} / n \mathbb{Z})$ be given by $\alpha(a, b)=$ $(a \bmod m, b \bmod n)$. Check that $\alpha(0)=(0,0), \alpha(1)=(1,1), \alpha(a+b)=\alpha(a)+\alpha(b)$ and $\alpha(a b)=$ $\alpha(a) \alpha(b)$. This means α is a ring homomorphism.

Exercise 9.7. Exercises 9.7.1, 9.7.2.

