Number Theory Fall 2009 Homework 10 Due: Wed. Nov. 11, start of class

9.2 Statement of quadratic reciprocity

Exercise 9.1. Use quadratic reciprocity to determine for which primes p is 7 a square mod p.

9.3 Euler's criterion

Exercise 9.2. Show \Box_p is a subgroup of $(\mathbb{Z}/p\mathbb{Z})^{\times}$. Show the map $\sigma : (\mathbb{Z}/p\mathbb{Z})^{\times} \to (\mathbb{Z}/p\mathbb{Z})$ given by $\sigma(x) = x^2$ is 2-to-1. Conclude the subgroup \Box_p has index 2 in $(\mathbb{Z}/p\mathbb{Z})^{\times}$, i.e., $|\Box_p| = \frac{p-1}{2}$.

Exercise 9.3. Explicitly write down the values of $\left(\frac{\cdot}{p}\right)$ for p = 7, 11, 13. In each case, write down what the subgroup \Box_p of $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is.

9.4 The value of $\left(\frac{2}{n}\right)$

Exercise 9.4. Let $a, b \in \mathbb{N}$. Show for p prime

$$(a+b)^p \equiv a^p + b^p \mod p.$$

9.5 The story so far

Exercise 9.5. Compute $\begin{pmatrix} 24\\ \overline{61} \end{pmatrix}$, $\begin{pmatrix} 30\\ \overline{61} \end{pmatrix}$, and $\begin{pmatrix} 31\\ \overline{61} \end{pmatrix}$.

9.7 The full Chinese remainder theorem

Exercise 9.6. Let gcd(m, n) = 1 and $\alpha : (\mathbb{Z}/mn\mathbb{Z}) \to (\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/n\mathbb{Z})$ be given by $\alpha(a, b) = (a \mod m, b \mod n)$. Check that $\alpha(0) = (0, 0)$, $\alpha(1) = (1, 1)$, $\alpha(a + b) = \alpha(a) + \alpha(b)$ and $\alpha(ab) = \alpha(a)\alpha(b)$. This means α is a ring homomorphism.

Exercise 9.7. Exercises 9.7.1, 9.7.2.