Number Theory Fall 2009 Homework 1
 Due: Wed. Sep. 2, start of class

Instructions: Read the homework guidelines and policies. Feel free to use a calculator or computer for the computational problems.

Reading assignment

Read the Lecture 1 notes as an overview (which cover some things I didn't have time to say in class), as well as the course guidelines.
Begin reading Chapter 1 of the text. You may also refer to my online notes, but I suggest primarily reading the text as its purpose is to be read (whereas the purpose of my notes are for my lecture).

Written assignment

1.1 Natural Numbers

Definition 1.1. We say a divides n (or a is a divisor of n), and write $a \mid n$, if $n=a b$, where n, a, b are natural numbers.

Exercise 1.1. Using the definition, prove that if $a \mid b$ and $b \mid c$, then $a \mid c$ (transitivity).
Exercise 1.2. While there is no known simple way to generate an arbitrary number of primes, certain polynomials are known to produce prime numbers up to a certain point. Let $p(n)=n^{2}+n+11$. Compute $p(n)$ for $0 \leq n \leq 20$. For which of these values is $p(n)$ prime? (Cf. Exercises in 1.1 the text for a similar question.)

1.2 Induction

Exercise 1.3. Prove by induction: $3 \mid 2 k^{3}+k$ for any natural number k.

1.3 Integers

Exercise 1.4. 1.3.1, 1.3.3 (can use 1.3.2 without doing it), 1.3.4-1.3.6

1.5 Binary Notation

Exercise 1.5. Write 19 in binary. Exercises 1.5.1, 1.5.3, 1.5.5.

