
3 Congruence arithmetic

3.1 Congruence mod n

As we said before, one of the most basic tasks in number theory is to factor a number a. How do
we do this? We start with smaller numbers and see if they divide a.

You have probably know some basic divisibility tests:
2, 5, 10 — check last digit
3, 9 — check sum of digits
4, 25 — check last two digits
11 — check sum of odd vs even digits

The natural way to explain these tests (and find new ones) is by a more refined approach to
divisibility: congruences. Instead of just saying a number a is divisible or not by some number m,
it is helpful to look at the remainder, denoted a mod n.

Example.

0 mod 4 = 0
1 mod 4 = 1
2 mod 4 = 2
3 mod 4 = 3
4 mod 4 = 0
5 mod 4 = 1
6 mod 4 = 2
7 mod 4 = 3
8 mod 4 = 0

Definition 3.1. We say a is congruent to b modulo n, and write a ≡ b mod n if the remainders
a mod m and b mod n are equal, i.e., if n|b− a.

Example. 1003 ≡ 999 mod 4.

3.2 Congruence classes and their arithmetic

Definition 3.2. The congruence class of a (mod n) is

nZ + a = {nk + a : k ∈ Z} .

Note: this is the set of all numbers which are congruent to a mod n.
Proof: If b ∈ nZ + a then b − a = nk for some k so n|b − a, i.e., b ≡ a mod n. Conversely

b ≡ a mod n precisely means b− a = nk for some k, i.e., b ∈ nZ + a.

Example. 2Z = {even numbers} and 2Z + 1 = {odd numbers}. Note: the nZ + a representations
for congruence classes are not unique: e.g., 2Z = 2Z + 6 and 2Z + 1 = 2Z− 1.

Example. nZ = {all numbers divisible by n}.
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Example. 4Z + 1 = {. . .− 7,−3, 1, 5, 9, . . .}

Thus we see congruences mod n partition the integers into n “evenly distributed” classes, gen-
eralizing the notion of even and odd.

Observe that if x mod n = a and y mod n = b, then x + y mod n = (a + b) mod n. I.e., if
x ∈ nZ + a and y ∈ nZ + b then x + y ∈ nZ + (a + b). Hence congruence classes respect addition.
They also respect multiplication: if x = nk + a and y = nl + b then

xy = n2kl + nla+ nkb+ ab ∈ nZ + ab.

Hence we can work with the operations of + and × mod n just as with the integers.

Example. Addition on a 12 hour clock. 5 hours after 8:00 is 1:00. Using congruences, we can
write this as 8 + 5 ≡ 1 mod 12.

Example. Let n = 2, 5 or 10. Write a = ak · 10k + ak−1 · 10k−1 + · · ·+ a1 · 10 + a0. Then

a ≡ (ak · 0 + ak−1 · 0 + · · ·+ a1 · 0 + a0) ≡ a0 mod n

since 10 ≡ 1 mod n. This explains why it suffices to check the last digit for divisibility by n = 2, 5, 10.

Example. Let n = 3 or 9. Write a = ak · 10k + ak−1 · 10k−1 + · · ·+ a1 · 10 + a0. Then

a ≡ (ak + ak−1 + · · ·+ a1 + a0) ≡ mod n

since 10 ≡ 1 mod n. Hence a number is divisible by n = 3 if and only if the sum of its digits are,
and the same is true for n = 9.

Exercise 3.1. Exercises 3.1.3, 3.1.4 (no proof needed for 3.1.4).

Exercise 3.2. Write a = ak · 10k + ak−1 · 10k−1 + · · ·+ a1 · 10 + a0. Prove that a is divisible by 11
if and only if the sum of the odd digits (ak where k odd) minus the sum of the even digits (ak where
k even) is. (Hint: see Exercises 3.2.2, 3.2.3.)

There are several methods for testing divisibility by 7, though they are more complicated. Can
you figure any out?

A more algebraic approach.
Denote the set of congruence classes mod n by Z/nZ.

Definition 3.3. We can define addition and multiplication in Z/nZ as follows. The sum of two
congruence classes is given by

(nZ + a) + (nZ + b) = nZ + (a+ b).

The product is given by
(nZ + a)(nZ + b) = nZ + ab.
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Note: The idea of congruence arithmetic is very simple. The integers modulo n (i.e., the
remainders) are 0, 1, . . . , n− 1. For example for n = 7 we would like to say that

5 mod 7 + 3 mod 7 = 1.

However this is technically incorrect as

5 mod 7 + 3 mod 7 = 5 + 3 = 8 6= 1.

In other words, usual integer addition doesn’t make sense on the integers mod n. So one approach
is to write equations as mod n equivalence relations, e.g.,

5 + 3 ≡ 8 ≡ 1 mod 7.

However, by defining addition and multiplication on Z/nZ (equivalence classes), we can use the
tools of modern algebra to study congruence arithmetic. In particular, we have made Z/nZ into a
what is called a ring (formal definition later). In this way we would write our above equation as

(7Z + 5) + (7Z + 3) = 7Z + 8 = 7Z + 1.

In practice however, it is cumbersome to write elements of Z/nZ as nZ + a. So we will often refer
to elements of nZ (e.g., class nZ + a) by a representative of the class (e.g., a). For instance, we
may refer to the class 7Z + 6 as the element 5 in Z/7Z, or we might call it the element -2 in Z/7Z
depending on which is convenient, with it being understood that we mean the class of integers
containing that number. Nevertheless, to avoid confusion we will not write explicit equations in the
form, say 52 = 4 (in Z/7Z), but rather in congruence notation: 52 ≡ 4 (mod 7).

Example. Write down addition and multiplication tables for Z/5Z.

Exercise 3.3. Write down addition and multiplication tables for Z/6Z.

3.3 Inverses mod p

Assume n > 1.

Definition 3.4. We say a is invertible mod n if there exists b ∈ Z such that ab ≡ 1 mod n. In
this case b is called the (multiplicative) inverse of a (mod n).

Note that this only depends on the congruence class, i.e., if a ≡ b mod n, then a is invertible
mod n if and only if b is.

In Z only a = ±1 are invertible (in the same sense: ∃a−1 ∈ Z), however we saw in Z/5Z, every
non-zero element is invertible. This means the non-zero classes mod 5 form an abelian group.

Definition 3.5. Let G be a set with a binary operation · . , i.e., · is a function from G×G→ G,
expressed as (g, h) 7→ g · h. If G satisfies the following properties,

(i) · is associative: (g · h) · k = g · (h · k) for all g, h, k ∈ G;
(ii) there is an identity 1 ∈ G such that 1 · g = g · 1 = g for all g ∈ G;
(iii) every g ∈ G has an inverse g−1 such that g−1 · g = g · g−1 = 1;

then we say (G, ·) (or just G) is a group. If (i) through (iii) and
(iv) · is commutative: g · h = h · g for all g, h ∈ G

also hold, we say (G, ·) (or just G) is an abelian group. When the operation is understood, we
typically write gh for g · h.
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Note: We will not prove the following elementary facts, but 1·g = g for all g is equivalent to g ·1 = g
for all g, and g−1g = 1 is equivalent to gg−1 = 1, so one does not need to check multiplications both
ways. (This is of course trivial when G is abelian—our primary case of interest.) Also conditions
(ii) and (iii) defining the identity and the inverse of an element imply that such elements will be
unique.

The finite abelian groups are the simplest class of groups and have a simple characterization. If G
is a finite group with n elements, we say it is a finite group of order n, and write |G| = n. In case
you are not familiar with groups, here are some examples.

Example. (Z,+) is an abelian group. So is (Q,+) and (R,+), but (N,+) is not (see below).

Example. (Z/nZ,+) is an finite abelian group of order n.

Exercise 3.4. Rewrite what properties (i) through (iv) mean when our operation is written as +
(called additive) and not · (called multiplicative). Which properties fail for (N,+)? What is the
(additive) inverse of 8Z + 5 in the group (Z/8Z,+)?

Example. (n-th roots of unity) Fix n. Let Un =
{
e2πik/n : 0 ≤ k < n

}
. Then, with the standard

multiplication, Un is a finite abelian group of order n. It has the same structure (is “isomorphic”
to) (Z/nZ,+), the only difference being one group is written with multiplicative notation and one
with additive notation.

Example. (dihedral groups) Fix n > 2. Let P be a regular polygon with n vertices. The the set
of automorphisms of P , namely the rotations and reflections which map P to itself, form a finite
non-abelian group of order 2n called D2n, where the operation is composition.

Example. (symmetric groups) Let Sn be the set of permutations of {1, 2, . . . , n}. Then Sn is a
finite group of order n! with the composition operation. It is non-abelian for n > 2.

Example. Q× = Q − {0} is an infinite abelian group with multiplication. So is R× and C×.
Similarly, the positive rational (or reals) also are.

Example. Let SL(2,Z) =
{(

a b
c d

)
: ad− bc = 1

}
. This is an infinite non-abelian group with

usual matrix multiplication, and is an important group in number theory.

Okay, so those were some examples. Basically, a group (in multiplicative notation) is a collection
of objects that you can multiply and divide, and has “1.” If the multiplication is commutative (which
it is for numbers, but not in general for groups of functions or matrices), we say it is abelian (after
Niels Abel).

We are interested in the invertible elements mod n, or equivalently, the invertible elemtns of
Z/nZ:

(Z/nZ)× = {nZ + a ∈ Z/nZ : a invertible mod n} .

Exercise 3.5. Prove (Z/nZ)× is a finite abelian group. You may take for granted that multiplication
is well defined on Z/nZ (from the previous section) and associative, though you should say a sentence
about why it is well defined on (Z/nZ)×.

Before tackling (Z/nZ)× in general (as in, what are they? how many are there?) we first deal
with the case n is prime.
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Proposition 3.6. Let p be prime. Then (Z/pZ)× is the set of non-zero classes in Z/pZ, i.e., it is
a finite abelian group of order p− 1.

(By the zero class, we mean pZ ∈ Z/pZ.)

Proof. First note that the zero class Z/pZ cannot be invertible. For if it were, that would mean 0
is invertible mod p, but there is no b such that 0 · b ≡ 1 mod p.

Now we want to show any other class pZ + a is invertible, i.e., for any a 6≡ 0 mod p, show a is
invertible mod p. Since p - a and p is prime, gcd(a, p) = 1. Thus Section 2.3 implies there exist
m,n ∈ Z such that

ma+ np = gcd(a, p) = 1.

Hence ma ≡ 1 mod p and m is the inverse of p.

This statement says that any non-zero class in Z/pZ is invertible, which implies Z/pZ is a field
with + and ·, for those of you that have seen fields before.

Note that the proof shows we can determine the inverse of a mod p by the extended Euclidean
algorithm.

A little group theory.

Definition 3.7. Let (G, ·) be a group. Let H be a subset of G. If (H, ·) is also a group then H is
called a subgroup of G. The (left) cosets of H in G are the subsets of G of the form

gH = {gh : h ∈ H} , g ∈ G.

Example. nZ ⊆ Z.

Just as congruences mod n partition Z into n different classes, we will see that the cosets
partition G into a certain number of different classes (which we now call cosets). Let us first look
at a few more examples.

Example. U2 ⊆ U4.

Example. U2, U3 ⊆ U6.

Example. H = {1} ⊆ G.

Example. H = G ⊆ G.

Proposition 3.8. (Lagrange’s theorem) If H is a subgroup of a finite group G, then |H| divides
|G|.

Proof. First note that any the size of any coset gH is |H|: if h, h′ ∈ H, then

gh = gh′ =⇒ g−1gh = g−1gh′ =⇒ h = h′,

hence for a fixed g, all the products gh are distinct.
Now we claim that any two distinct g1H and g2H are disjoint. For if they intersect, then for

some h1, h2 ∈ H, we have g1h1 = g2h2. We can write any h ∈ H as h1h
−1
1 h, so

g1h1 = g2h2 =⇒ g1h = g1h1h
−1
1 h = g2(h2h

−1
1 h) ∈ g2H,
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i.e., any element of g1H must be inside g2H also. But since the have the same size (|H|), we must
have g1H = g2H, proving the claim.

Hence the cosets {gH} partition G into disjoint subsets, all of size |H|. In particular there must
be |G|/|H| cosets, which proves Lagrange’s theorem.

Exercise 3.6. Let G = (Z/7Z)×. We represent the elements of G by 1, 2, . . . , 6.
(i) Write down the multiplication table for G.
(ii) Let H = {1, 6}. Show H is a subgroup of G. (It suffices to check H is closed under

multiplication and each element of H has an inverse in H. In other words, you may use the first
lemma of the next section.)

(iii) Determine the cosets of H in G.
(iv) Repeat (ii) and (iii) for the set H = {1, 2, 4}.

3.4 Fermat’s little theorem

A basic way to test is something is a subgroup is

Lemma 3.9. If G is a group and H is a nonempty subset of G, then H is a subgroup of G if and
only if it is closed under multiplication and taking inverses.

Proof. (⇐) Suppose H is closed under multiplication and taking inverses. Being closed under
multiplication implies that the multiplication on G restricts to a well defined binary operation on
H. Associativity holds because it does in G. If H is closed under inverses, then pick any h ∈ H so
h−1 ∈ H. (Here is where we need H nonempty.) By closure under multiplication hh−1 = 1 ∈ H.
This takes care of all 3 properties required to be a group.

(⇒) If H is a group, it is closed under multiplication and inverses by definition.

Note this is similar to the result in linear algebra that something is a subspace of a vector space
if and only if it is closed under addition and scalar multiplication.

Lemma 3.10. Let G be a finite group and a ∈ G. Then (i) there is some n ∈ N such that an = 1.
(ii) Take the smallest such n, called the order of a. Then C =

{
a, a2, a3, · · · , , an

}
is a subgroup

of G of order n.

Proof. (i) Since G is finite, and ak ∈ G for all k ∈ N there must be some j, k ∈ N with j 6= k such
that aj = ak. Assume j < k and let n = k − j. Then ajan = ajak−j = ak = aj . Multiplying by
(aj)−1, we see an = 1.

(ii) Let n be the order of a, i.e., n ∈ N is the smallest such that an = 1. Then the argument in
(i) shows we can’t have aj = ak for 1 ≤ j < k ≤ n—otherwise ak−j = 1 but k − j < n. Hence C
has precisely n elements.

By the previous lemma, to check it is a subgroup it suffices to check closure under multplication
and inverses. Take any aj and ak in C (with 1 ≤ j, k ≤ n). If j + k ≤ n, ajak = aj+k ∈ C trivially;
if j + k > n, we see ajak = aj+k = aj+k−nan = aj+k−n ∈ C since 1 ≤ j + k − n ≤ n. Hence C is
closed under multplication.

Note since an = 1, (an)−1 = 1 = an ∈ C. For any 1 ≤ j < n, we have 1 ≤ n − j < n. Then
since ajan−j = an
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The group C in this lemma is called the cyclic subgroup generated by a because it consists
only of elements that are powers of a single element a. (It is called cyclic because these powers
cyclically repeat: an = 1, an+1 = ana = a, an+2 = ana2 = a2, . . ..)

Exercise 3.7. Check that the powers of a cyclically repeat in this example.
(i) With the notation in the previous exercise (in (Z/7Z)×), compute 3k for 1 ≤ k ≤ 10.
(ii) What is the cyclic subgroup of (Z/7Z)× generated by 3? What about generated by 2?

Proposition 3.11. (Fermat’s little theorem) If p is prime and a 6≡ 0 mod p, then ap−1 ≡ 1 mod p.

Proof. We have seen that (Z/pZ)× is an abelian group of order p− 1. Let a ∈ (Z/pZ)×. Fermat’s
little theorem is equivalent to the statement that ap−1 = 1.

Let C be the cyclic subgroup of (Z/pZ)× generated by a. Now C has order n where n ∈ N is
minimal such that an = 1. By Lagrange’s theorem, n = |C| divides p − 1 = |(Z/pZ)×|. Hence we
can write p = 1 = mn for some m. Thus ap−1 = amn = (an)m = 1m = 1.

Example. (Formula for inverses mod p) Suppose gcd(a, p) = 1. Then the inverse a−1 of a mod
p is given by a−1 ≡ ap−2 mod p. Check: a−1a ≡ ap−2a ≡ ap−1 ≡ 1 mod p.

Recall we saw in Section 1.5 that we can do exponentiation quickly. This means we can compute
inverses mod p quickly this way. We also showed we can compute them quickly via the extended
Euclidean algorithm in the last section. However that was an algorithm and not a formula. In
general, it will be more convenient to use this explicit formula.

Exercise 3.8. Use the formula a−1 ≡ ap−2 mod p to compute the inverse of 5 mod 11. (Do this
computation by hand.)

3.5 Congruence theorems of Wilson and Lagrange

Proposition 3.12. (Wilson’s theorem). Let p be prime. Then (p− 1)! ≡ −1 mod p.

Proof. Note if p = 2 it is trivial since 1 ≡ −1 mod 2. Suppose p > 2. By the previous section, we
know every 1 ≤ a ≤ p− 1 is invertible mod p. If x ≡ x−1 mod p, then x2 ≡ 1 mod p so

x2 − 1 ≡ (x− 1)(x+ 1) ≡ 0 mod p,

i.e., p|(x− 1) or p|(x+ 1). By the prime divisor property, this means

x ≡ ±1 mod p.

Hence the only (equivalence classes of) 1 ≤ a ≤ p− 1 which are their own inverses mod p are (the
equivalence classes of) a = 1 and a = p− 1.

Now we write

(p− 1)! ≡ 1 · 2 · 3 · · · (p− 2)(p− 1) ≡ −2 · 3 · · · (p− 2) mod p.

However each of the remaining factors 2, 3, . . . , p− 2 are invertible and none of them are their own
inverses. Hence any factor above, e.g., 2, will cancel with its inverse, e.g., 2−1, in the product
above.

Exercise 3.9. Exercises 3.5.1, 3.5.2, 3.5.3. (Correction: 3.5.1 should say if n > 5 is not prime,
show n|(n− 1)!)
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Above, we proved the quadratic polynomial x2−1 has at most two solutions (up to equivalence)
mod p, given by 1 and p− 1. These are distinct if and only if p > 2, which is why we separated the
case p = 2 first. This is similar to the fact that a polynomial of degree n has at most n solutions in
Z (or Q or R or C). This is also true for Z/pZ.

Proposition 3.13. (Lagrange) Let P (x) be a polynomial of degree n over Z and p be prime. Then
P (x) ≡ 0 has at most n solutions mod p (i.e., in Z/pZ).

Proof. If P (x) ≡ 0 mod p has no solutions we are done. Otherwise, let x = r be a solution and
write

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0.

Then

P (x)− P (r) ≡ an(xn − rn) + an−1(xn−1 − rn−1) + · · · a1(x− r) ≡ (x− r)Q(x) mod p

for some polynomial Q(x) of degree n − 1. This is because we can factor out an (x − r) from any
xj − rj to get a polynomial of degree j − 1 over Z.

However, since x = r is a solution to P (x) ≡ 0 mod p,

P (x) ≡ P (x)− P (r) ≡ (x− r)Q(x) mod p.

So if x is any solution to P (x) ≡ 0 mod p, we have either p|(x− r) or p|Q(x) by the prime divisor
property. Thus any solution not equivalent to r mod p, must be a solution of the degree n − 1
equation

Q(x) ≡ 0 mod p.

Hence the number of solutions to P (x) ≡ 0 mod p is one plus the number of solutions to Q(x) ≡
0 mod p. Applying our argument for P (x) to Q(x), we can inductively reduce the problem down
(i.e, use descent) to the case n = 1, where the result is trivial.

It often happens that P (x) = 0 will have more solutions mod p than in Z

Exercise 3.10. Let P (x) = x2+1. Clearly P (x) = 0 is not solvable in Z. However P (x) ≡ 0 mod 5
is solvable mod 5. Determine all solutions.

3.6 Inverses mod k

When k is not prime, not every non-zero class mod k is invertible. For example 2 is not invertible
mod 4: it is immediate from the definition that 2k ≡ 0, 2 mod 4.

Proposition 3.14. a is invertible mod k if and only if gcd(a, k) = 1.

Proof. (⇒) a invertible mod k means ma ≡ 1 mod k for some m, i.e., ma ∈ kZ + 1, i.e., for some
n, ma+ nk = 1. Since any common divisor of a and k must then divide 1, gcd(a, k) = 1.

(⇐). gcd(a, k) = 1 implies ma + nk = 1 for some m,n ∈ Z. Reducing this mod k gives
ma ≡ 1 mod k.

Example. (Z/8Z)× consists of (the classes of) 1, 3, 5, 7. Note that every element is it’s own inverse,
i.e., every element satisfies x2 = 1 (in contrast to the mod p case). Hence (Z/8Z)× is non-cyclic
(not generated by the powers of a single element) abelian group of order 4.
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Exercise 3.11. For 2 ≤ k ≤ 7 and k = 9, do the following. Write down the elements in (Z/kZ)×

and state the order of the group. For each a ∈ (Z/kZ)×, find the smallest n such that an = 1.
Determine if (Z/kZ)× is cyclic or not. If it is cyclic, state an element that generates the group.

Definition 3.15. The Euler phi function is

φ(k) := # {1 ≤ a ≤ k − 1 : gcd(a, k) = 1} .

Hence the proposition tells us
|(Z/kZ)×| = φ(k).

Many introductory number theory courses will spend a fair amount of time studying φ(k) and the
structure of (Z/kZ). We will limit our study of φ(k) to the following. We already showed for p
prime |(Z/pZ)×| = p− 1, so φ(p) = p− 1.

Exercise 3.12. Show φ(pj) = pj−1(p− 1) for j ≥ 1. (Exercises 3.6.1, 3.6.2, 3.6.3.)

Exercise 3.13. We will show in Chapter 9 that if m and n are relatively prime, then φ(mn) =
φ(m)φ(n). Check this in the special cases (i) m = 3 and n = 5 (Exercise 3.6.4), and (ii) m = 2
and n is an odd prime.

These two results show that we can determine φ(k) from its prime factorization.

Example. φ(33 · 5) = 32(3− 1)(5− 1) = 9 · 8 = 72.

Exercise 3.14. Determine φ(60).

Proposition 3.16. (Euler’s theorem) For any invertible a mod k, we have aφ(k) ≡ 1 mod k

Exercise 3.15. Following the proof of Fermat’s little theorem, prove Euler’s theorem in the same
way.

3.7 Quadratic Diophantine equations

We can now use congruence arithmetic to say some things about non-existence of solutions of
Diophanine equations.

Example. x2 + y2 = p has no solution for p of the form 4n+ 3.

Example. x2 + 2y2 = p has no solution for p of the form 8n+ 5 or 8n+ 7.

Example. x2 + 3y2 = p has no solution for p of the form 3n+ 2.

Though p was not necessarily prime in the examples above, we can reduce the question of which
numbers are of the form x2 + y2, etc., to the question of which primes are. This is because

(a2 + b2)(c2 + d2) = (ac+ bd)2 + (ad− bc)2,

i.e., if two numbers are sums of two squares, so is their product.

On the other hand is much harder is to show, for example, that any prime of the form 4n+ 1 is a
sum of two squares, and one cannot do this with simple congruences.

Exercise 3.16. Exercise 3.7.1.

Exercise 3.17. Show that if p = x2 + 4y2, then p is of the form 4n or 4n+ 1.

Exercise 3.18. Using congruences, prove that k3 + 2k is always divisible by 3.

Exercise 3.19. Show that if p = x3 + y3, then p is not of the form 9n+ 4 or 9n+ 5.
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3.8 *Primitive roots

Note that

1/3 = 0.3333 · · ·
1/7 = 0.142857 142857 · · ·

1/13 = 0.076923 076293 · · ·

These are all periodic, with period lengths 1, 6, 6.

Proposition 3.17. The decimal expansion of x ∈ R is periodic if and only if x ∈ Q.

The proof is not difficult but we will omit it. Note the expansion 1/2 = 0.5 is considered periodic
with period length 1 because after the 5, it repeats with zeroes: 1/2 = 0.50000000 . . ..

Definition 3.18. Suppose we have the decimal expansion 1/n = 0.a1a2a3 · · · ar. Then 1/n is called
strictly periodic. The smallest such r is called the period length.

Note 1/n is not always strictly periodic: 1/2 = 0.50 and 1/6 = 0.16. From now on, assume 1/n
is strictly periodic.

Proposition 3.19. If 1/n is strictly periodic with period length r, then 10 has order r in (Z/nZ)×.

Proof. Write 1/n = 0.a1a2a3 · · · ar. Then 10r/n−1/n = a1a2 · · · ar ∈ Z which implies that 10r−1 ∈
nZ, i.e., 10r ≡ 1 mod n. Note 10 cannot have order less than r, or else the period of 1/n would be
smaller.

Note that this implies the period r ≤ φ(n). If r = φ(n) we say 1/n has maximal period
length.

Definition 3.20. We say a is a primitive root mod n if a generates (Z/nZ)×, i.e., (Z/nZ)× ={
aj
}
. Equivalently, a is a primitive root mod n if the order of a in (Z/nZ)× is φ(n).

Hence 1/n has maximal period length if and only if 10 is a primitive root mod n.

Conjecture 3.21. (Gauss) There are infinitely many primes such that 1/p has maximal period
length.

Still unknown!

Exercise 3.20. Without dividing, determine the period length of 1/11. (For p > 5, we have
gcd(p, 10) = 1, and one can show 1/p will be strictly periodic, so you may use the above propo-
sition.) Check what the decimal expansion is on a calculator.

3.9 *Existence of primitive roots

Let p be prime.

Lemma 3.22. There are at most φ(n) elements of (Z/pZ)× of order n.
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Proof. Suppose a ∈ (Z/pZ)× has order n. Then 1, a, a2, . . . an−1 are n distinct solutions to

xn ≡ 1 mod p.

By the theorem of Lagrange in Section 3.5, there are at most n solutions to this equation, so
1, a, a2, . . . an−1 are all of them.

On the other hand, if gcd(j, n) = d > 1, then j(n/d) = kn for some k. Hence

(aj)(n/d) ≡ akn ≡ (an)k ≡ 1 mod p,

i.e., aj has order n/d < n. In other words, aj only has order n if gcd(j, n) = 1.

Lemma 3.23.
∑

d|N φ(d) = N .

Proof. Write
1
N
,

2
N
, · · · , N

N

in reduced form, e.g.,

1
6
,

2
6
,

3
6
,

4
6
,

5
6
,

6
6
−→ 1

6
,

1
3
,

1
2
,

2
3
,

5
6
, 1.

Note that we will a reduced form a
d with denominator d precisely φ(d) times. Thus counting this

set in two ways give the result.

Theorem 3.24. There is a primitive root mod p.

Proof. By Fermat’s little theorem, ap−1 ≡ 1 mod p for any 1 ≤ a ≤ p− 1. Hence each a has order
d for some d|p− 1. Thus the number of 1 ≤ a ≤ p− 1 with order less than p− 1 is∑

d|p−1d<p−1

φ(d) = p− 1− φ(p− 1) < p− 1.

Hence some element has order p− 1 mod p, i.e., is a primitive root.

3.10 Discussion

Read it if you want to.

4 RSA

One important practical application to the material of the last chapter is the RSA cryptosystem.

Last night: Bob finds two big primes p and q walking down the street, and multiplies them
together: n = pq (blam!) He picks a random number e up at a bar, and posts e and n on his blog
when he gets home.

ννν playa: Alice wants to send Bob a smokin’ email m, without the fink sys admin Eve being able to
read it. So she checks Bob’s webpage, sees e and n, and sends him a cipha’ c ≡ me mod n (blam!
blam!)
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Back in the crib: Since Bob is tight with p and q, he knows φ(n) = φ(p)φ(q) = (p − 1)(q − 1),
and therefore d ≡ e−1 mod φ(n). So we he get’s Alice’s messsage, he’s just like, whoa, I know what
Alice is sayin’:

cd ≡ med ≡ mkφ(n)+1 ≡ m mod n (blam! blam! blam!)

Computer lab: Eve is hatin’ on Alice ’n Bob ’cuz she don’t know her p’s and q’s, so she don’t
know φ(n) or m.

28


