
2 The Euclidean algorithm

Do you understand the number 5? 6? 7? At some point our level of comfort with individual
numbers goes down as the numbers get large. For some it may be at 43, for others, 4. In any case,
the most basic way of understanding a natural number is knowing its prime factorization.

Ironically, there is no “easy” way to determine if a number is prime or not, or what its prime
factors are. For instance, say you had a random 5 digit number: 72193. There is no simple way to
determine if it is prime or not, or what its divisors (other than 1 obviously) are, short of trying to
divide it by all possible smaller numbers: 2, 3, 4, 5, 6, etc. (Of course it suffices to try to divide it
by all primes smaller than it, but to put this in to practice, you already need to know which smaller
numbers are primes and which are not.)

On the other hand, it turns out to be easy to determine the gcd (greatest common divisor) of
two numbers. This may seem somewhat paradoxical at first, but having two numbers instead of
just one lets you compare them. In fact, if we think about what it should mean to understand
something (a number), one good interpretation is to understand how it is similar and how it is
different from other things (other numbers). And, from a multiplicative point of view, the gcd
tells us precisely what two numbers have in common. Furthermore, the gcd will help us with the
problems of understanding primes and prime factorization.

2.1 The gcd by subtraction

Let a, b, d ∈ N.
First note that if d is a common divisor of a and b, i.e.,

a = a′d, b = b′d,

for some a′, b′ ∈ N, then
a− b = a′d− b′d = (a′ − b′)d

so d is a divisor of a− b. Similarly, if d is a common divisor of a− b and b, then it is also a divisor
of a = (a− b)− b. Hence the common divisors of a and b are the same as the common divisors of
a− b and b. In particular,

gcd(a, b) = gcd(b, a− b)

Euclid used this idea to make an efficient algorithm to determine gcd(a, b).
The Euclidean algorithm goes as follows. Set

a1 = max {a, b} , b1 = min {a, b} .

Then we inductively compute

ai+1 = max {bi, ai − bi} , bi+1 = min {bi, ai − bi} ,

stopping only when we have
ak = bk.

(This procedure produces smaller and smaller pairs of natural numbers so must eventually terminate
by descent. The max/min business is to ensure we always have ai ≥ bi so that the ai− bi appearing
in the next step is positive.)
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Example. Do a = 15, b = 6.

The reason this works is as follows. Since gcd(a, b) = gcd(b, a− b), we have

gcd(a, b) = gcd(a1, b1) = gcd(a2, b2) = · · · = gcd(ak, bk) = gcd(ak, ak) = ak.

Example. Do a = 18, b = 5.

If gcd(a, b) = 1, we say a and b are relatively prime.

Exercise 2.1. Exercises 2.1.1, 2.1.3, 2.1.5.

Exercise 2.2. Compute gcd(84, 63) using the above method. Write out each step.

2.2 The gcd by division with remainder

A more efficient version of the Euclidean algorithm is as follows. Set

a1 = max {a, b} , b1 = min {a, b} ,

ai+1 = bi, bi+1 = remainder in ai/bi,

halting when we have a pair
ak, bk with bk|ak.

Then
gcd(a, b) = bk.

This algorithm is essentially the same as the subtraction version, but the division can do several
steps of subtraction at once.

Example. Do a = 18, b = 5.

Write a and b in binary. Suppose a > b and a is n bits (binary digits) long. Then the remainder
in a/b has at most n − 1 bits, so this algorithm will terminate at most n steps. In other words, if
max a, b < 2n+1, then we can determine gcd(a, b) in at most n steps (called logarithmic time.) This
is as efficient as one could hope for. A computer could handle numbers thousands of digits long in a
fraction of a second. On the other hand, even with very advanced algorithms, a modern computer
might take up to a year to factor a 200 digit number.

Another advantage of the division version is it can deal with other number systems. E.g., if you
want to compute gcd(17, 4 + i) in Z[i], you can divide 17 by 4 + i (and get 4 − i exactly), but
subtraction gives you nothing.

Exercise 2.3. Compute gcd(42, 8) using the division method. Write out each step.
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2.3 Linear representation of the gcd

If we go back to the subtraction version of the Euclidean algorithm, it is clear that at each step ai

and bi are (integral) linear combinations of a and b. Hence

gcd(a, b) = ak = ma + nb (1)

for some m, n ∈ Z.
Often it will be helpful to determine not just gcd(a, b) but also the above m and n. This can be

done through a variety of equivalent methods, sometimes called the extended Euclidean algorithm.
We will present the tableau method, which is more efficient than the one in the text.

Consider the example from the text: a = 34, b = 19. The idea is to use a little linear algebra,
and is similar to matrix row reduction, but we build a table, starting with the following two rows.
For clarification I will write the underlying equation on the right, though in practice you will omit
this.

m n x ←→ ma + nb = x
1 0 34 1 · a + 0 · a = 34
0 1 19 0 · a + 1 · b = 19

The entries running down the x column will just be the successive numbers a1, b1, b2, . . . , bk from
the division algorithm. The m and n entries for the bi row will just be the coefficients needed for
ma + nb = bi. For example, here b2 = a1 − b1, so the next row will just be obtained by subtracting
the second from the first (do this to each column) to get

m n x ←→ ma + nb = x
1 0 34 1 · a + 0 · a = 34
0 1 19 0 · a + 1 · b = 19
1 1− 15 1 · a− 1 · b = 15

We do this again to get
m n x ←→ ma + nb = x
1 0 34 1 · a + 0 · a = 34
0 1 19 0 · a + 1 · b = 19
1 −1 15 1 · a− 1 · b = 15
−1 2 4 −1 · a + 2 · b = 4

Now 4 goes into 15 3 times, so we should subtract 3 times the last row from the previous row to get

m n x ←→ ma + nb = x
1 0 34 1 · a + 0 · a = 34
0 1 19 0 · a + 1 · b = 19
1 −1 15 1 · a− 1 · b = 15
−1 2 4 −1 · a + 2 · b = 4
4 −7 3 4 · a− 7 · b = 3
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With one more step we are done:

m n x ←→ ma + nb = x
1 0 34 1 · a + 0 · a = 34
0 1 19 0 · a + 1 · b = 19
1 −1 15 1 · a− 1 · b = 15
−1 2 4 −1 · a + 2 · b = 4
4 −7 3 4 · a− 7 · b = 3
−5 9 1 −5 · a + 9 · b = 1

We know we are done now because the last bj (x = 1) divides the previous bj (x = 3). Hence the
tableau method has shown two things:

gcd(a, b) = 1

and
gcd(a, b) = −5a + 9b.

Exercise 2.4. Exercise 2.3.2. (You may use either the tableau method, the method in the text, or
any other equivalent method you like. Just write down each step and explain your method if it is
not one of two mentioned above.)

2.4 Primes and factorization

Proposition 2.1. Let n ∈ N, n > 1. Then has a prime factorization

n = p1p2 · · · pk

where each pi is prime. (Here the pi’s are not necessarily distinct.)

Proof. By definition, n is either prime or n = ab for some a, b > 1. If a and b are prime, we are
done. If not, then we repeat this with a and b, until we have reduced all factors to products of
primes. This process terminates by descent, and we are done.

Note the existence of a prime factorization relies only on the definition of prime and Fermat’s
descent, and not any any arithmetic of N. Hence this will hold for any number system in which
descent holds (such as N or Z, but not Q or R). Contrast that to the following.

Proposition 2.2. (Prime divisor property) Let p be prime. If p|ab then p|a or p|b.

Proof. Suppose p - a. Then gcd(a, p) = 1 since p is prime. From Section 2.3, we have

1 = ma + np

for some m, n ∈ Z. Hence
b = mab + npb.

Since p|mab (by assumption) and p|npb (trivially), we have p|b, which proves the proposition.
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This seemingly evident fact relies on the arithmetic of N (or Z if you will)—in particular the
fact that gcd(a, b) is a linear combination of a and b (which we proved with via the Euclidean
algorithm). We will see that in other number systems, such as Z[

√
−5] =

{
a + b

√
−5 : a, b ∈ Z

}
,

this prime divisor property is not true.
The prime divisor property allows us to prove another basic result which we normally take for

granted. (This result and the previous are in fact equivalent.)

Proposition 2.3. (Fundamental theorem of arithmetic; aka. Unique prime factorization;
aka. Unique factorization) Let n ∈ N, n > 1. Then the prime factorization of n is unique, up
to reordering the primes.

Proof. (By contradiction.) Suppose n has two distinct factorizations

p1 · · · pk = q1 · · · q`.

By cancelling out any common factors on each side, we may assume none of the pi’s equal any of
the qj ’s.

Now p1 divides the product on the left, hence p1|q1 · · · q`. So by the prime divisor property,

p1|q1 or p1|q2q3 · · · q`.

But p1 - q1 because p1 6= q1 and q1 is prime. Hence

p1|q2 · · · q` =⇒ p1|q2 or p1|q3 · · · q`.

Similarly p1 - q2, and continuing this argument we eventually get

p1|q`−1q` =⇒ p1|q`−1 or p1|q`.

But both of these are impossible, contradicting our supposition.

We will often be working with integers and not just natural numbers, so it may be helpful to
restate it in terms of integers. It is not explicitly stated this way in the text at this point.

Fundamental theorem of arithmetic (for integers). Let n ∈ Z, n 6= 0. Then n can be
expressed in a unique way (up to reordering) as

n = upe1
1 pe2

2 · · · p
ek
k

where u is a unit (±1), pi ∈ N is prime, ei ∈ N and k ≥ 0.

(Note we allow the possibility that no primes appear (k = 0) in the factorization to include the
units ±1 in the statement.)

This result is called the fundamental theorem of arithmetic (though not by the text), because
it plays such an important role in number theory (which is sometimes also called arithmetic). Its
importance was first pointed out by Gauss (because he noticed that it doesn’t hold for Z[

√
−5],

which makes Z[
√
−5] much harder to work with). However, it will hold in some other number

systems, such as the Gaussian integers Z[i] (the statement will be essentially identical to our second
version).
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2.5 Consequences of unique prime factorization

Here we will explore some simple consequences of unique factorization.

First we will make the following observation:
n is a square ⇐⇒ n = p2e1

1 · · · p2ek
k

Proof. (⇒) If n = m2, write m = pe1
1 · · · p

ek
k .

(⇐) Clearly n = (pe1
1 · · · p

ek
k )2.

This observation does not require unique prime factorization, but the next proposition does. (Pay
attention how. Unfortunately the text is not careful in pointing out where unique factorization is
used and how it is required here.)

Proposition 2.4. If ab is a square and gcd(a, b) = 1, then a and b are squares.

Proof. If ab is square, write
ab = p2e1

1 · · · p2ek
k .

Now by unique factorization, the prime factorizations of a and b must be of the form

a = pf1
1 · · · p

fk
k , b = pg1

1 · · · p
gk
k

where fi, gi ≥ 0 and fi + gi = 2ei. If a and b share no common factors, then by reordering our
primes, we can write

a = p2e1
1 · · · p2ej

j , b = p
2ej+1

j+1 · · · p
2ek
k .

Hence a and b are squares.

If you don’t have unique factorization, then it could happen that there are distinct primes p, q
and r such that p2 = qr, so that the proposition would be false.

Proposition 2.5. If N is nonsquare, then
√

N is irrational.

Proof. We prove the contrapositive. Suppose
√

N = a
b is rational. Write

a = pm1
1 · · · p

mk
k

and
b = pn1

1 · · · p
nk
k

where mi, ni ≥ 0. (Note this is not the unique prime factorization, but by allowing 0’s in the
exponents, we can write a and b as products of the same primes.) Then

N =
a2

b2
= p

2(m1−n1)
1 · · · p2(mk−nk)

k .

Hence N is a square.

Exercise 2.5. Does Proposition 2.5 (the irrational square roots result in Section 2.5) require that
the prime factorization is unique? Explain.
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Exercise 2.6. Prove the following (slighly generalized) assertion from Section 2.5: Unique prime
factorization implies that each prime power divisor of a natural number n (i.e., a prime power that
divides n) actually appears in the prime factorization of n. (Hint: it’s easy, but you need to write
down what it means to be a divisor.)

The previous exercise implies that a common prime power divisor of a and b appears in the
prime factorization of each. Hence, gcd(a, b) is the product of the largest common prime powers
in the prime factorizations of a and b. By largest common prime power we mean for each prime
occuring in both a and b, the largest power of it which divides both. (The text does not talk about
prime powers here, making its statements somewhat vague.)

Example. Do a = 23 · 52 · 7, b = 25 · 34 · 72.

Thus it is easy to compute the gcd if you know the prime factorizations. We can rewrite this
mathematically as follows. Write

a = pm1
1 · · · p

mk
k , b = pn1

1 · · · p
nk
k

where mi, ni ≥ 0 (again not the unique factorization as exponents of 0 are allowed) in terms of
common primes. Then

gcd(a, b) = p
min(m1,n1)
1 · · · pmin(mk,nk)

k .

Similarly one has
lcm(a, b) = p

max(m1,n1)
1 · · · pmax(mk,nk)

k .

Exercise 2.7. Exercises 2.5.1 and 2.5.2.

2.6 Linear Diophantine equations

Note: This section could have been done right after Section 2.3, and might be more natural there.

The simplest Diophantine equations (remember Diophantine equations? the alleged subject of
number theory?) are the binary (2-variable) linear ones:

ax + by = c, a, b, c ∈ Z. (2)

For fixed a, b, c the first thing to ask is, is there a solution (in integers)? If so, determine all solutions.
Graphically, this is a line in the plane with rational slope −a

b and rational y-intercept c
b :

y = −a

b
x +

c

b

(assuming b 6= 0). But we will not solve it graphically—it is easier to use the divisor theory we
developed.

Proposition 2.6. Equation (2) has a solution (in integers) if and only if gcd(a, b)|c.

Proof. (⇒) If there is a solution, then

gcd(a, b)|ax and gcd(a, b)|by =⇒ gcd(a, b)|c.

(⇐) If gcd(a, b)|c, we can write c = gcd(a, b)d and by Section 2.3, for some m, n ∈ Z

gcd(a, b) = am + bn =⇒ c = gcd(a, b)d = amd + bnd

exhibiting a solution of x = md and y = nd where m and n are found via the extended Euclidean
algorithm (Section 2.3).
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Note the homogeneous equation
ax + by = 0 (3)

has infinitely many solutions. Specifically, let d = gcd(a, b) and write a = a′d, b = b′d. Then all
integer solutions are given by {

(x, y) = (kb′,−ka′) : k ∈ Z
}

.

Proposition 2.7. Suppose (2) has a solution (x0, y0) (which we obtained in the proof of the propo-
sition above.) All solutions to (2) are given by (x0, y0) + (x, y) where (x, y) is a solution to (3).

Proof. You should have seen this proof in linear algebra already.
(⇒) Suppose (x1, y1) is another solution to (2). We want to show it is of the desired form. Then

(ax1 + by1)− (ax0 + by0) = c− c = 0.

Hence (x, y) = (x1 − x0, y1 − y0) is a solution to (3).
(⇐) Suppose (x, y) is a solution to (3). Then

a(x0 + x) + b(y0 + y) = (ax0 + by0) + (ax + by) = c + 0 = c

so (x0, y0) + (x, y) is a solution to (2).

Exercise 2.8. Exercises 2.6.1, 2.6.2, 2.6.3, 2.6.4.

2.7 *The vector Euclidean algorithm

2.8 *The map of relatively prime pairs

We will skip these sections. I do not find them particularly interesting, however they are used in
Conway’s graphical theory of quadratic forms (see Chapter 5), which I do find interesting, but I do
not plan to cover.

2.9 Discussion

Read it if you want it. I made all the comments I wanted to already.
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