
Introduction to Number Theory (Fall 2009)
My notes

Kimball Martin

September 2, 2009

Warning: These are my notes for lecture for myself, and are not a substitute for the text, or
the lectures, or you taking your own notes. Consequently, some details in the lecture and text will
not appear here (particularly many examples and some details of proofs), but I am posting them as
a supplementary reference for the text. (They contain several remarks from lecture that are not in
the text.) I also do not know if I will have time to type up notes for the whole semester. However,
I will make a point of typing notes for any material not covered in the text.

1 Natural Numbers and Integers

1.1 Natural Numbers

Definition 1.1. The natural numbers are N = {1, 2, 3, . . .}.

Definition 1.2. We say a divides n (or a is a divisor of n), and write a|n, if n = ab, where n, a, b
are natural numbers.

Exercise 1.1. Using the definition, prove that if a|b and b|c, then a|c (transitivity).

Note for any n, both 1 and n are divisors of n.

Definition 1.3. A natural number p is prime if it has only 2 divisors: 1 and p. (Note this excludes
1.) E.g., 2, 3, 5, 7, 11, 13, 17, . . .

The biggest mystery of number theory is that the primes—fundamental building blocks of natural
numbers—individually appear almost completely random, while at the same time, as a group follow
certain patterns with complete regularity.

First result: Infinitude of Primes (see two proofs from Lecture 1 notes)

Exercise 1.2. While there is no known simple way to generate an arbitrary number of primes,
certain polynomials are known to produce prime numbers up to a certain point. Let p(n) = n2+n+11.
Compute p(n) for 0 ≤ n ≤ 20. For which of these values is p(n) prime? (Cf. Exercises in 1.1 the
text for a similar question.)

1.2 Induction

Example. Show 3|k3 + 2k for any natural number k.

Exercise 1.3. Prove by induction: 3|2k3 + k for any natural number k.
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1.3 Integers

Definition 1.4. The integers are Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

Advantage of Z over N: can subtract any two numbers. This provides more algebraic structure,
which makes it easier to work with.

Example. Describe the set S of numbers of the form 4m + 7n (1) where m, n ∈ N; and (2) where
m, n ∈ Z.

(1) S = {11, 15, 18, 19, 22, 23, 25, 26, 27} ∪ {29, 30, 31, 32, 33, 34, . . .}
Check ≤ 32 by hand.

29 = 4 · 2 + 7 · 3 =⇒ 29 + 4m ∈ S

30 = 4 · 4 + 7 · 2 =⇒ 30 + 4m ∈ S

31 = 4 · 6 + 7 · 1 =⇒ 31 + 4m ∈ S

32 = 4 · 1 + 7 · 4 =⇒ 32 + 4m ∈ S

(2) S = Z
1 = 4 · 2 + 7 · (−1) =⇒ n = 4 · (2n) + 7 · (−n) ∈ S

Exercise 1.4. 1.3.1, 1.3.3 (can use 1.3.2 without doing it), 1.3.4–1.3.6

1.4 Division with Remainder

Given a, b ∈ N, we can repeatedly subtract b from a, say q times, until we get a number 0 ≤ r < a.
This gives a unique representation

a = qb + r, 0 ≤ r < b

where q is the quotient and r is the remainder. Note r = 0 ⇐⇒ b|a.

Example. a = 35, b = 11.

1.5 Binary Notation

Repeated division of n ∈ N by b ∈ N leads naturally to the b-ary representation of n. We will just
do examples in the standard (decimal) case of b = 10 and the binary case of b = 2.

Example. n = 1234, b = 10.

Example. n = 43, b = 2.

101011

In general the b-ary representation of n is akak−1 · · · a1a0 if

n = ak · bk + ak−1 · bk−1 + · · ·+ a1 · b + a0

where 0 ≤ ai < b. It is well-defined and unique for n ≥ 0.
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1234 = 1 · 103 + 2 · 102 + 3 · 10 + 4

43 = 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 1 · 2 + 1

Number of operations. Observe we can use binary representation to drastically reduce the
number of operations required to do things like exponentation, which is useful in computation-
intensive work.

Example. Compute 343.

343 = 325 · 323 · 32 · 31

Now don’t compute 325 as 332, but by repeated squaring:

32 = 9

322
= 92 = 81

323
= 812 = 6561

324
= 65612 = 43046721

325
= 43046721 = 1853020188851841
(5 operations)

Then
343 = 1853020188851841 · 6561 · 9 · 3. (3 operations)

This is a total of 8 operations, instead of 43. (Here the operation being multiplying 2 numbers.)
Note blog2 43c = 5 and you can always do exponentation with exponent e using between ` (best case:
binary rep. is 100 · · · 0) and 2` (worst case: binary rep. is 111 · · · 1) operations where ` = blog2 ec,
instead of e ≈ 2` operations.

Exercise 1.5. Write 19 in binary. Exercises 1.5.1, 1.5.3, 1.5.5.

1.6 Diophantine Equations

Algebra is concerned with solutions of equations. Finding solutions in radicals, e.g., a la the
quadratic formula, is one kind of problem. This is the subject of Galois theory and relies on
the algebraic notions of groups and fields.

Another is finding solutions in integers, which is the subject of number theory. This relies upon
the algebraic notions of ideals and rings, which we will introduce in the latter part of the course.

One might also consider solutions in natural numbers. As exhibited in Section 1.3, problems
in natural numbers may be more complicated than problems in integers, owing to the lack of
subtraction. In other cases, these two kinds of problems are equivalent (see the Pythagorean triples
below). In any case, problems in natural numbers are a restrictive case of problems in integers, and
considered part of number theory. Also in practice, it often makes sense to consider the problem in
integers first.

Of course, another natural question is to consider solutions in rational numbers. Multiplying
through by denominators allows us to consider integer solutions of a related equations, so these
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problems are also subsumed in our definition of number theory. However, just like the distinction
between natural numbers and integers, problems in rational are sometimes much easier than prob-
lems in integers because of the added struction division affords. (For example, consider the question:
what natural numbers are of the form x3 + y3 + z3. If we want x, y, z ∈ Z, this is unsolved (#14 of
the quiz); but if we allow x, y, z ∈ Q, then it is not too difficult to show the answer is all natural
numbers.) But it many cases, they end up being equivalent (e.g., the congruent number problem,
#15 of the quiz).

Definition 1.5. A Diophantine equation is an equation of the form (or an equivalent form to)
f(x1, . . . , xm) = 0 where f(x1, . . . , xm) is a polynomial with integer coefficients.

Important examples are:

• The Pythagorean equation x2 + y2 = z2. Solutions are called Pythagorean triples.

• The Pell equation x2 − ny2 = 1 where n is not a square.

• The Bachet equation y3 = x2 + n for n > 0. (Examples of elliptic curves.)

• The Fermat equation xn + yn = zn for n > 2.

We will study the above equations, at least in part, in the course of the semester.

For the Pythagorean equation, Euclid showed around 300BC that the solutions in N are precisely

x = (u2 − v2)w, y = 2uvw, z = (u2 + v2)w,

where u, v, w ∈ N. It is clear that these all give solutions:

x2 + y2 = (u2 − v2)2w2 + 2(u2v2)w2 = (u2 + v2)2w2 = z2,

but it is not clear why these should be all of the solutions. We give a proof (more or less) by
elementary means in the next section, and present an algebraic number theory proof in Section 6.6.

1.7 The Diophantus Chord Method

Another classical kind of question in number theory (and arithmetic or algebraic geometry) is,
given a curve C, what are its rational points, i.e., what points on C have rational coordinated? The
Diophantus chord method, also called the rational slope method, is one method we can use in many
cases.

Namely, suppose you know one rational point Q on C. If R is another rational point on C, then
the line through P and Q must have rational slope t (or possibly t =∞). This suggests the following
way to find all rational points on a curve, which we illustrate for the circle C : X2 + Y 2 = 1. There
are 4 obvious rational points on C, we pick Q = (−1, 0). The line through Q with slope t is given
by

Y = t(X + 1).

Hence other any rational point R on C must lie on one of these lines for some rational t (it is clear
geometrically we don’t need to worry about the vertical line through Q). Substitute in Y = t(X +1)
in the equation for C to get

X2 + t2(X + 1)2 = 1,
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i.e.,
X2(1 + t2) + 2t2X + t2 − 1 = 0.

The quadratic formula gives the solutions X = −1 (which gives Q) and

X =
1− t2

1 + t2
=⇒ Y =

2t

1 + t2
.

Since X and Y are rational when t is, this gives another rational point R. In fact, this parametrizes
all rational points on the circle:(

1− t2

1 + t2
,

2t

1 + t2

)
for t rational and (-1,0) (the “t =∞” case).

How is this related to Pythagorean triples? (Stillwell glosses over the details, but I think it is
good to go through at least most of them.) Write X = x

z and Y = y
z where z. Then the equation

for C is precisely the Pythagorean equation x2 + y2 = z2. Now write t = v
u , where u, v ∈ Z. Then

x

z
= X =

u2 − v2

u2 + v2
,

y

z
= Y =

2uv

u2 + v2
.

One would like to say that this implies

x = (u2 − v2), y = 2uv, z = (u2 + v2).

It is clear this may not be true. It is more reasonable to hope that

x = (u2 − v2)w, y = 2uvw, z = (u2 + v2)w, (1)

for some w ∈ N (which also seems more reasonable because it agrees with Euclid’s solution.)
However, even this is not necessarily true:

x = 4, y = 3, z = 5, u = 3, v = 1

gives
x

z
=

4
5

=
u2 − v2

u2 + v2
=

8
10

,
y

z
=

3
5

=
2uv

u2 + v2
=

6
10

but
x = 4 6= u2 − v2 = 8, y = 3 6= 2uv = 6, z = 5 6= u2 + v2 = 10.

This example shows even requiring all our fractions x
z , y

z and v
u be in lowest terms is not sufficient

to make this happen.
Nevertheless, it is not difficult to show that if we assume our v

u is in reduced terms, then either

x = (u2 − v2)w, y = 2uvw, z = (u2 + v2)w.

or

x =
(u2 − v2)w

2
, y = uvw, z =

(u2 + v2)w
2

,

for some w ∈ N. (The idea is that if u and v share no common divisors, uv and u2 +v2 also share no
common divisors, so it must be that the reduced form for 2uv

u2+v2 is 2uv
u2+v2 or uv

(u2+v2)/2
. This implies
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either z = (u2 + v2)w or z = (u2 + v2)w/2 for some w, which gives the corresponding equations
for x and y.) In the first case we are done; in the second case, the change of variables u′ = u + v,
v′ = u− v gives

x = 2u′v′w, y = (u′2 − v′2)w, z = (u′2 + v′2)w,

which is the form we wanted with x and y reversed. Thus, up to switching x and y any integer
solutions to the Pythagorean equation are of the form (1) for u, v, w ∈ Z. This implies any natural
number solutions to the Pythagorean equation are also of the form (1) gives Euclid’s solution to the
Pythagorean triple problem (where of course now one requires u, v, w ∈ N with u > v).

Note that one can easily go back and forth between integer and rational solutions to x2 + y2 =
z2 simply by multiplying in or out any denominators. This is possible because the equation is
homogeneous, i.e., all terms have the same degree (2 in this case).

The rational slope method is also useful in finding rational points on ellipic curves

y2 = x3 + ax + b.

However, because this is inhomogeneous, the nature of the integer and rational solutions are quite
different (one cannot scale an old solution to get a new one). See Exercises in 1.7.

Exercise 1.6. Use the rational slope method to find all rational points on the ellipse X2 +2Y 2 = 1.

1.8 Gaussian Integers

Note that the elementary solution above required some trickery. I previously suggested introducing
the Gaussian integers,

Z[i] = {a + bi : a, b ∈ Z} ,

would lead to an elegant solution due to the factorizations

x2 + y2 = (x + iy)(x− iy).

This idea will lead to several other results as well as be indicative of more general methods.
Gauss noticed that Z[i] has similar properties to Z—for one, they are both closed under +,−

and ×. We first prove a modest result.

Two square identity. Products of sums of two squares are sums of two squares.

(a2
1 + b2

1)(a
2
2 + b2

2) = (a1a2 − b1b2)2 + (a1b2 + b1a2)2

Proof. Note we can rewrite this as

(a1− b1i)(a1 + b1i)(a2− b2i)(a2 + b2i) = (a1a2− b1b2− (a1b2 + b1a2)i)(a1a2− b1b2 +(a1b2 + b1a2)i),

which is the RHS. (Here we multiplied the 1st and 4th and 2nd and 3rd terms on the left.)

Corollary 1.6. If (a1, b1, c1) and (a2, b2, c2) are Pythagorean triples, so is (a1a2 − b1b2, a1b2 +
b1a2, c1c2).

Proof.
c2
1c

2
2 = (a2

1 + b2
1)(a

2
2 + b2

2) = (a1a2 − b1b2)2 + (a1b2 + b1a2)2

by the two square identity.
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This can of course be proved without resorting to complex numbers, and must have first been,
as Stillwell suggests it was known to Diophantus and possibly the Babylonians. However, it is more
naturally seen when viewed from the complex numbers C. For any z = a + bi ∈ C (a, b ∈ R), define
the norm of z

N(z) = |z|2 = |a + bi|2 = a2 + b2.

Then it is clear from the absolute value expression that z = z1z2 implies

(a2
1 + b2

1)(a
2
2 + b2

2) = N(z1)N(z2) = |z1|2|z2|2 = |z|2 = N(z) = a2 + b2

where zk = ak + bki. This is precisely the two square identity above, since one computes

z1z2 = (a1 + b1i)(a2 + b2i) = (a1a2 − b1b2) + (a1b2 + b1a2)i =⇒ a = a1a2 − b1b2, b = a1b2 + b1a2.

Hence the two square identity follows from the fact that Z[i] is closed under multiplication and the
norm map is multiplicative, i.e., N(z1)N(z2) = N(z1z2).

As mentioned in Lecture 1, one has similar notions of divisibility and prime for Z[i] as with
Z. This suggests the following approach to the Pythagorean triple problem. Suppose (x, y, z) is a
primitive Pythagorean triple, meaning x, y and z have no common factors (in Z). Now using Z[i],
we factor

z2 = x2 + y2 = (x− yi)(x + yi).

Since x and y have no common factors in Z, it is reasonable to guess that x− yi and x+ yi have no
common factors in Z[i] (whatever this means). But then for the LHS to be a square, both x − yi
and x + yi would have to be squares in Z[i], i.e.,

x− yi = (u− vi)2 = (u2 − v2)− 2uvi

for some u, v ∈ Z. This means

x = u2 − v2, y = 2uv =⇒ z = u2 + v2.

Then we can easily go from primitive Pythagorean triples to all Pythagorean triples by multiplying
each of x, y and z by w to get Euclid’s solution as above. All of this will be made precise in Chapter
6.

In principle, we could move directly on to the material in Chapter 6 and do this now, but to
get a better appreciation for the development of the subject, we will tackle things in order and do
some elementary number theory first.

Exercise 1.7. Exercises 1.8.4, 1.8.5, 1.8.6.

1.9 Discussion

The Pythagorean triple question—essentially, when is x2 +y2 a square?—leads to another question:
what values does the quadratic form x2 + y2 take? i.e., what numbers are sums of two squares? i.e.,
which n can we write as n = x2 + y2? One natural geometric interpretation (assuming x, y ∈ N) is:
what are the possible hypoteni of right triangles whose base and height are integer lengths?

As suggested earlier, it’s easier to first consider the problem over Z, and then not too hard to
obtain the solution over N. The Exercises in 1.8 imply that if n = x2 + y2, it cannot be of the
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form 4k +3. Around 1640, Fermat answered this question, as well as similar questions for the forms
x2 + 2y2 and x2 + 3y2.

In 1798, at the ripe age of 21, Gauss finished his finished his landmark work in number theory,
Disquisitiones Arithmeticae, which thoroughly treated general binary (here meaning two-variable)
quadratic forms ax2 + bxy + cy2, after being previously studied by such greats as Euler, Lagrange
and Legendre.

Disquistiones was very hard to penetrate, and the leading 19th century number theorists essen-
tially developed algebraic number theory and much of modern algebra—in particular, rings, ideals
and abelian groups—in order to understand it.

The basic idea of algebraic number theory—introducing other number systems—goes back at
least to Euler and Lagrange around 1770. For example, Euler determined the integer solutions to
y3 = x2 + 2 by using Z[

√
−2] =

{
a + b

√
−2 : a, b ∈ Z

}
factoring to get y3 = (x +

√
−2)(x−

√
−2),

and assuming Z[
√
−2] behaves sufficiently like Z. Similarly one can use Z[

√
−2] to study the form

x2 + 2y2.
Gauss rejected this argument, and in fact as he may have known, not all number systems

Z[
√
−d] have the same properties as Z—in particular, unique factorization into primes may fail.

He did however prove that Z[i] has unique factorization. Subsequently, Kummer and Dedekind,
resolved the issue of unique factorization through the concept of ideals (which are closely related to
quadratic forms), and understanding this will be one of the main goals of the course.
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