
Chapter 5

Pell’s Equation

One of the earliest issues grappled with in number theory is the fact that geometric quantities
are often not rational. For instance, if we take a right triangle with two side lengths equal to
1, the hypopotamus has length

p
2, which is irrational. But how can we do arithmetic with

irrational numbers? Well, perhaps the most basic thing is to work with rational approxima-
tions. Almost 4000 years ago, Babylonians had discovered the following approximation to
p
2:

p
2 = 1.41421356... ⇡

30547

21600
= 1.41421296. (5.0.1)

In this chapter we’ll explain how find the (integer) solutions to Pell’s equation:

x
2
� dy

2 = 1, (5.0.2)

and how gives us good approximations to
p
d (see Proposition 5.2.3).

Following Stigler’s law of eponomy1, Pell’s equation was studied by the Indian mathe-
matician and astronomer Brahmagupta in 628 (who discovered the composition law Propo-
sition 5.1.1) and with a general method of solution by another Indian mathematician and
astronomer, Bhaskara II, in 1150. In Europe, methods for solving Pell’s equation were redis-
covered hundreds of years later by Fermat and Lord Brouncker. Euler misattributed Lord
Brouncker’s solution after reading a discussion of Lord Brouncker’s method written by the
English mathematician John Pell (1611–1685).

Throughout this chapter d > 1 is a positive integer which is not a square.

5.1 Units and Pell’s equation

Recall that a unit u of Z[
p
d] was defined to be an element such that u has a multiplicative

inverse u
�1

2 Z[
p
d] (i.e., the real number u 6= 0 and 1

u 2 Z[
p
d]). Further, by Lemma 2.1.2,

we know that x+ y
p
d 2 Z[

p
d] (x, y,2 Z) is a unit if and only if

N(x+ y

p

d) = (x+ y

p

d)(x� y

p

d) = x
2
� dy

2 = ±1.

1That no scientific discovery is named after it’s first discoverer. The Pythagorean theorem is another
famous example. Of course there are many counterexamples to Stigler’s law as well. Appropriately, Stigler’s
law itself is not.

130



Number Theory 5. Pell’s Equation Kimball Martin

Thus solutions to Pell’s equation (5.0.2) are in natural bijection with the units of Z[
p
d] with

norm 1.
On the other hand, we also know by Proposition 3.3.4 that the set of units

U = Ud = Z[
p

d]⇥

of Z[
p
d] form an (abelian) group. We also denote by U

+ = U
+
d the set of units in U = Ud

of norm 1, so we can think of the solutions to Pell’s equation as the subgroup U
+ of U .

Exercise 5.1.1. Check that U
+ is indeed a subgroup of U .

This group structure will help us determine the set of solutions to Pell’s equation. First,
we have the following, which is similar to the composition law for sums of two squares.

Proposition 5.1.1. (Composition law) If (x1, y1) and (x2, y2) are solutions to

x
2
1 � dy

2
1 = m, x

2
2 � dy

2 = n.

Then the composition of these solutions defined by

(x3, y3) = (x1, y1) · (x2, y2) := (x1x2 + dy1y2, x1y2 + y1x2) (5.1.1)

is a solution of
x
2
3 � dy

2
3 = mn.

Proof. We simply translate the above into a statement about norms. The hypothesis says
N(x1 + y1

p
d) = m and N(x2 + y2

p
d) = n. Now observe that

(x1 + y1

p

d)(x2 + y2

p

d) = x1x2 + ny1y2 + (x1y2 + y1x2)
p

d = x3 + y3

p

d.

Hence by the multiplicative property of the norm,

x
2
3 � dy

2
3 = N(x3 + y3

p

d) = N(x1 + y1

p

d)N(x2 + y2

p

d) = mn.

In particular, when m = n = 1, this says that we can compose two solutions to Pell’s
equation to get a third solutions. We can also compose two solutions to x

2
� dy

2 = �1 to
get a solution to x

2
� dy

2 = +1. Both of these are summarized in this corollary.

Corollary 5.1.2. Let u1 = x1 + y1

p
d and u2 = x2 + y2

p
d be units of Z[

p
d]. If N(u1) =

N(u2), then the composition (x1, y1) · (x2, y2) defined in Eq. (5.1.1) also a solution to Pell’s
equation (5.0.2).

The following should be obvious if you’ve had an algebra class, but since we never covered
isomorphisms, I’m not entirely sure if this is obvious to you:
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Exercise 5.1.2. Let G ⇢ Z ⇥ Z be the set of solutions to Pell’s equation (5.0.2). Show
that the composition law Eq. (5.1.1) makes G into a group. (Note the above corollary just
says composition is a binary operation on G.)

Now that we know the composition law, the hope is that if we can determine a few good
solutions to Pell’s equation, then maybe we can generate all solutions by composing those we
know. Moreover, ideally these good solutions should be the “smallest nontrivial” solutions
to Pell’s equation. By the trivial solutions to Pell’s equation, we mean the obvious ones:
(x, y) = (±1, 0), which correspond to the elements of U+ which lie in Z, i.e., ±1.

Example 5.1.1. Consider d = 2. Note (1, 1) is a solution to x
2
� 2y2 = �1. The

composition (1, 1) · (1, 1) = (3, 2) is a nontrivial solution to Pell’s equation x
2
� 2y2 = 1.

Similarly, we compute (3, 2) · (3, 2) = (17, 12) and (3, 2) · (17, 12) = (99, 70).
Hence (3, 2), (17, 12) and (99, 70) are three nontrivial solutions to x

2
� 2y2 = 1.

Exercise 5.1.3. Find a nontrivial solution to x
2
� 3y2 = 1. Use composition to find two

more (distinct) solutions to x
2
� 3y2 = 1.

We remark that in the case of d = 3, unlike d = 2, there are no units of norm �1. In
fact, the following more general statement is true.

Exercise 5.1.4. Suppose d ⌘ 3 mod 4. Show Z[
p
d] has no units of norm �1, i.e.,

Ud = U
+
d .

The converse to the previous exercise does not hold, i.e., there may or may not be a
unit of norm �1 when d 6⌘ 3 mod 4. We’ve seen there is such a unit when d = 2. The next
exercise gives you an example where there isn’t a unit of norm �1 but d 6⌘ 3 mod 4.

Exercise 5.1.5. Show that Z[
p
6] has no units of norm �1.

In general, it is an open problem to determine for what d there are units of norm �1
in Z[

p
d]. It’s not clear that there is a nice answer to this problem, but there results about

how often Z[
p
d] has units of norm �1.

5.2 Approximation and existence of solutions

At the end of the last section we saw that there are nontrivial solutions to Pell’s equation
when d = 2, 3. Next we will prove the existence of a non-trivial solution for all nonsquare
d, which is originally due to Lagrange in 1768. However, the proof we will give is due to
Dirichlet (ca. 1840). It uses the pigeonhole principle. You’ve probably at least seen the
finite version in your Discrete Math class.
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Pigeonhole principle

• (finite version) If m > k pigeons go into k boxes, at least one must box must contain
more than 1 pigeon.

• (infinite version) If infinitely many pigeons go into k boxes, at least one box must
contain infinitely many pigeons).

Proposition 5.2.1. (Dirichlet’s approximation theorem) For any nonsquare d > 1
and integer B > 1, there exist a, b 2 N such that b < B and

|a� b

p

d| <
1

B
.

This says that |ab �
p
d| <

1
bB

1
B , which is a precise way of saying a

b is close to
p
d. E.g., it

says we can find a rational approximation a
b for

p
2 which is accurate within 1

100,000 (so a
b and

p
2 agree to 5 decimal places, after rounding if necessary2) with denominator b < 100, 000.

Such an example was exhibited at the beginning of this chapter in (5.0.1).

Proof. Consider the B � 1 irrational numbers
p

d, 2
p

d, . . . , (B � 1)
p

d.

For each such number k
p
d (1  k  B � 1), let ak 2 N be such that

0 < ak � k

p

d < 1.

Partition the interval [0, 1] into B subintervals of length 1
B . Then, of the B + 1 numbers

0, a1 �
p

d, a2 �
p

d, . . . , aB�1 � (B � 1)
p

d, 1

in [0, 1] two of them must be in the same subinterval of length 1
B . Hence they are less than

distance 1
B apart, i.e., their difference satisfies |a� b

p
d| <

1
B . Further their irrational parts

must be distinct, so we have �B < b < B with b 6= 0. If b > 0 we are done; if b < 0, simply
multiply a and b by �1. Clearly we need a > 0 for |a� b

p
d| < 1.

Theorem 5.2.2. Suppose d 2 N is nonsquare. Then x
2
�dy

2 = 1 has a nontrivial solution,
i.e., there is a unit in Z[

p
d] of norm 1 other than ±1.

Proof. Step 1. Fix B1 > 1. Then by Dirichlet’s approximation theorem, there exist
a1, b1 2 N such that |a1 � b1

p
d| <

1
B1

<
1
b1

. Let B2 > b1 such that 1
B2

< |a1 � b1

p
d|.

Applying Dirichlet’s approximation again, we get a new pair (a2, b2) of integers such that

|a2 + b2

p

d| <
1

B2
<

1

b2
.

2For instance, 0.5006 and 0.49998 are within 1
1000 of each other, but their first three digits are only equal

after rounding to the nearest 4 digits.
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Repeating this we see there an infinite sequence of distinct integer pairs (aj , bj) such that
|aj � bj

p
d| gets smaller and smaller, and

|aj � bj

p

d| <
1

bj
.

for all j � 1. Then aj
bj

is an infinite sequence of increasingly good approximations to
p
d.

Step 2. Assume (a, b) satisfies |a� b
p
d| <

1
b . Note that

|a+ b

p

d|  |a� b

p

d|+ |2b
p

d|  1 + 2b
p

d  3b
p

d.

Then
|a

2
� db

2
| = |a+ b

p

d||a� b

p

d|  3b
p

d
1

b
= 3

p

d.

Hence there are infinitely many a� b
p
d 2 Z[

p
d] whose norm, in absolute values, is at most

3
p
d.

Step 3. By successive applications of the (infinite) pigeonhole principle, we have:
(i) infinitely many a� b

p
d with the same norm n 2 Z, where |n|  3

p
d (and n 6= 0)

(ii) infinitely many a� b
p
d with norm n and a ⌘ a0 mod n for some a0.

(iii) infinitely many a� b
p
d with norm n, a ⌘ a0 mod n, b ⌘ b0 mod n for some b0.

Hence, relabeling if necessary, we have a1, b1, a2, b2 2 N such that N(a1 � b1

p
d) =

N(a2 � b2

p
d) = n, a1 ⌘ a2 mod n, b1 ⌘ b2 mod n, and a1 � b1

p
d 6= ±(a2 � b2

p
d).

Step 4. Consider

↵ :=
a1 � b1

p
d

a2 � b2

p
d
=

(a1 � b1

p
d)(a2 + b2

p
d)

a
2
2 � db

2
2

=
a1a2 � db1b2

n
+

a1b2 � b1a2

n

p

d.

Note
a1a2 � db1b2 ⌘ a1a1 � db1b1 ⌘ a

2
1 � db

2
1 ⌘ 0 mod n,

and
a1b2 � b1a2 ⌘ a1b1 � b1a1 ⌘ 0 mod n.

Thus the coefficients of ↵ are integers, i.e., ↵ = a+ b
p
d 2 Z[

p
d] where a, b 2 Z. Then hen

since

a
2
� db

2 = N(a+ b

p

d) = N(a1 � b1

p

d)N
⇣
(a2 � b2

p

d)�1
⌘
= nn

�1 = 1,

i.e., (a, b) is a solution of x
2
� dy

2 = 1. Furthermore, it is a nontrivial solution since
a1 � b1

p
d 6= ±(a2 � b2

p
d).

Exercise 5.2.1. Explain how to modify the above proof to conclude the existence of
infinitely many solutions to x

2
� dy

2 = 1. Conclude the real quadratic rings Z[
p
d] (d > 1

nonsquare) have infinitely many units, in contrast to the case of imaginary quadratic rings
Z[
p
�d].
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The above approximations suggest how solutions to Pell’s equation are related to rational
approximations to

p
d.

Proposition 5.2.3. Suppose (x, y) is a nontrivial solution to x
2
�dy

2 = 1. Assume x, y > 0.
Then

0 <
x

y
�

p

d <
1

y(1 +
p
d)

<
1

2y
.

Proof. Let ↵ = x� y
p
d 2 Z[

p
d]. Then N(↵) = ↵↵ = 1. Note ↵ = x+ y

p
d � 1+

p
d since

x, y � 1. Thus ↵ 
1

1+
p
d
, so

x

y
�

p

d =
↵

y
<

1

y(1 +
p
d)

.

Since ↵ and N(↵) are positive, so is ↵, and thus ↵
y , which finishes the asserted bounds.

This proposition says positive solutions (x, y) to Pell’s equation, i.e., units of norm
+1, give rational approximations to

p
d, and solutions with larger values of y give better

approximations. Furthermore, we are always getting overestimates for
p
d. One can similarly

get underestimates with units of norm �1, i.e., solutions to x
2
� dy

2 = �1, at least when
they exist. When they don’t, one could instead look for solutions to x

2
� dy

2 = �2 or
x
2
� dy

2 = �3 etc. We remark the approximation in (5.0.1) corresponds to the solution
(30547, 21600) to x

2
� 2y2 = �791, though I’m not suggesting Babylonians came up with

this approximation by starting with the equation x
2
� 2y2 = �791!

Exercise 5.2.2. Suppose (x, y) is solution to x
2
� dy

2 = �1 with x, y > 0. Show x
y <

p
d

and prove a (good) bound for
p
d�

x
y in terms of y.

Exercise 5.2.3. Suppose (x, y) is solution to x
2
� dy

2 = �2 with x, y > 0. Show x
y <

p
d

and prove a (good) bound for
p
d�

x
y in terms of y.

Example 5.2.1. Recall from Example 5.1.1, (3, 2), (17, 12) and (99, 70) are solutions to
x
2
� 2y2 = 1. This gives the following approximations, with the following error bounds 1

2y
from the above proposition:

x
y decimal error bound x

y �
p
2

3
2 1.5 < 0.25 0.085786...
17
12 1.416 < 0.0416 0.0024531...
99
70 1.4142857 < 0.00714285 0.00007215...
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Exercise 5.2.4. Recall the solutions in the previous example came from the first three
powers ✏

n (n = 1, 2, 3) of the unit ✏ = 3� 2
p
2 2 U

+
2 . However, none of these approxima-

tions are better than the (more complicated) Babylonian one (5.0.1). Using a calculator,
compute a few successive approximations to

p
2 from higher powers ✏

n, along with the
exact error (up to several decimal places). What is the first approximation you get in this
way that is better (i.e., closer to

p
2) than the one in (5.0.1).

Exercise 5.2.5. Using 3 nontrivial solutions to x
2
� 3y2 = 1 you found in Exercise 5.1.3,

give 3 rational approximations to
p
3 with error bounds. Using a calculator, compute the

actual error in these approximations (e.g., you can make a table as in the example above).

5.3 Fundamental units

Here we determine the structure of the group of units Ud, which will give us a method for
generating all solutions to Pell’s equation.

Definition 5.3.1. The fundamental unit "d of Z[
p
d] is the smallest unit x+y

p
d 2 Z[

p
d]

such that x, y > 0. The fundamental +unit "
+
d of Z[

p
d] is the smallest unit x + y

p
d 2

Z[
p
d] such that x, y > 0 and N(✏) = 1.3

In real quadratic rings, smallest means with respect to the usual order on R, unlike the
case of imaginary quadratic rings where we (partially) ordered elements by their norm.

Lemma 5.3.2. For any (nonsquare) d > 1, the fundamental unit "d and the fundamental
+unit "+d exist and are uniquely defined.

Proof. Since < defines a strict ordering of real numbers, the condition of “smallest” guaran-
tees that "d and "

+
d will be unique if they exist, so it suffices to show existence.

Recall we always have a nontrivial solution (x0, y0) to |x
2
�dy

2
| = 1 from Theorem 5.2.2.

Moreover, we can assume x0, y0 > 0. Now note if x+ y
p
d < "0 = x0 + y0

p
d with x, y > 0,

we must have x < "0 and y <
"0p
d
. Hence

"d = min
n
x+ y

p

d : 1  x,

p

dy < "0, |x
2 + dy

2
| = 1

o
.

Since the set on the right is finite, this minimum is well defined, hence "d exists.
The case of "+d follows in the same way, simply using the equation x

2
� dy

2 = 1 instead
of |x2 � dy

2
| = 1.

3Note that most discussions you will find about fundamental units talk about fundamental units in the
ring of integers Od of Q(

p
d). Here, assuming d is squarefree, Od is just Z[

p
d] when d 6⌘ 1 mod 4 but is

Z[ 1+
p
d

2 ] when d ⌘ 1 mod 4 (recall Definition 2.5.5). So be careful comparing what we say here and what is
written other places about fundamental units, as there may be a slight difference when d ⌘ 1 mod 4, though
there is no serious difference in the theory. E.g., when d = 5 a fundamental unit in Z[

p
5] is 2 +

p
5 but in

O5 it is 1+
p
5

2 . On the other hand, the fundamental unit in O17 = Z[ 1+
p
17

2 ] is the same as the fundamental
unit in Z[

p
17], namely "17 = 4 +

p
17.

Also, the term “fundamental +unit” is not standard—as far as I know, there is no standard term for the
phrase “the smallest unit of norm 1.”
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Here is a naive algorithm for finding "d or "
+
d . First, pick some bound N � 1. Then

range over all 1  x, y  N to look for solutions to |x
2
� dy

2
| = 1 or x

2
� dy

2 = 1. If we
found any, then the smallest solution (x, y) gives us "d or "

+
d as x+ y

p
d. If not, we pick a

larger N and repeat. This process terminates at some point by the existence of "d and "
+
d .

Example 5.3.1. When d = 2, "2 = 1+
p
2 and "

+
2 = "

2
2 = 3+2

p
2. We saw both of these

units in Example 5.1.1.

Example 5.3.2. When d = 5, we compute "5 = 2 +
p
5 and "

+
5 = "

2
5 = 9 + 4

p
5.

Example 5.3.3. Consider d = 7. Recall from Exercise 5.1.4 that Z[
p
7] has no units of

norm �1. We compute "7 = "
+
7 = 8 + 3

p
7.

Exercise 5.3.1. Compute "d and "
+
d for d = 3, 6, 11.

Exercise 5.3.2. An alternative definition of fundamental unit (resp. +unit) is the smallest
" > 1 in Z[

p
d] such that |N(")| = 1) (resp. N(✏) = 1). Prove that this is equivalent to

the above definition as follows. (Suggestion: Show that " = x + y
p
d > 1 a unit implies

|"| < 1, which implies x, y > 0.)

Theorem 5.3.3. For d > 1 nonsquare, Ud (resp. U+
d ) is the infinite abelian group generated

by "d (resp. "+d ) and �1. Explicitly,

Ud =
�
. . . ,±"

�2
d ,±"

�1
d ,±1,±"d,±"

2
d, . . .

 

and
U

+
d =

�
. . . ,±("+d )

�2
,±("+d )

�1
,±1,±"

+
d ,±("+d )

2
, . . .

 
,

and all the elements listed in the sets on the right are distinct, i.e., "md = ±"
n
d for m,n 2 Z

(resp. ("+d )
m = ±("+d )

n) if and only if m = n and the plus/minus sign is +.

Proof. We know Ud and U
+
d are abelian groups by Proposition 3.3.4 and Exercise 5.1.1.

Thus Ud and U
+
d must contain all the elements in the sets on the right.

Write G denote Ud or U
+
d , and let " denote "d or "

+
d , according to whether G = Ud or

G = U
+
d . Since " > 1, the sequence "

n (n � 0) is a strictly increasing sequence lying in
[1,1), and "

�n (n > 0) is a strictly decreasing sequence lying in (0, 1). From this one easily
sees that all elements in the above sets on the right are distinct.

Finally, we show any ↵ 2 G ⇢ Z[
p
d] is of the form ±"

n for some n 2 Z. Suppose there
is some ↵ which is not of this form. By taking the negative and/or inverse if necessary,
we may assume ↵ > 1. Since " is the smallest element of G larger than 1 (Exercise 5.3.2)
and "

n
! 1 as n ! 1, there must be some n > 0 such that "

m
< ↵ < "

m+1. But then
1 < ↵"

�m
< " and N(↵"�m) = 1, contradicting the minimality of ".
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Note that for any unit u 2 Ud, N(u) = uu = ±1 implies u�1 is either u or �u, according
to whether N(u) = 1 or N(u) = �1. In particular, if ("+d )

n = xn + yn

p
d, then ("+d )

�n =

("+d )
n = xn � yn

p
d.

Hence the above theorem says that once we find "
+
d , we can compute all elements of U+

d

by computing ("+d )
n = xn + yn

p
d, n � 1. Then the elements of U+

d are

U
+
d = {±1} [

n
±xn ± yn

p

d : n � 1
o
, (5.3.1)

where we read the ± signs in ±xn ± yn independently. (A similar statement is also true for
Ud.) This immediately gives our desired description of solutions to (5.0.2).

Corollary 5.3.4. For n � 1, write ("+d )
n = xn+yn

p
d for n � 1 (with xn, yn 2 Z). Then all

solutions to Pell’s equation x
2
� dy

2 = 1 are the trivial solutions (±1, 0) and the nontrivial
solutions (±xn,±yn) for n � 1.

Via Proposition 5.2.3, this gives us the following sequence of approximations

xn

yn
⇡

p

d

of
p
d. To prove that these approximations are getting better (at least asymptotically), by

this proposition we want to prove the yn’s are increasing.

Exercise 5.3.3. With xn, yn as above, show the sequences (xn) and (yn) are strictly
increasing sequences for n � 1. Deduce that the sequence xn

yn
converges to

p
d.

Using the above theorem, we can also relate "d and "
+
d now.

Exercise 5.3.4. For d > 1 a nonsquare, show "
+
d = "

2
d if Z[

p
d] has units of norm �1, and

"
+
d = "d otherwise. Deduce in particular that "d  "

+
d .

Hence if we solve the problem of finding the fundamental unit "d, we also know the
fundamental +unit "

+
d . Since "d  "

+
d , even if our goal is to compute "

+
d , it may often be

easier algorithmically to look for "d first, since the x and y appearing in the representation
x+ y

p
d can be much smaller.

Example 5.3.4. Consider d = 29. Then by the naive algorithm for finding fundamen-
tal units, we can check "29 = 70 + 13

p
29, which has norm �1. Thus "

+
29 = "

2
29 =

9801+1820
p
29, but this would require many more calculations to find solely by the naive

algorithm.

Here’s another consequence of the structure theorem for Ud (or, if you prefer, the previous
exercise): if Z[

p
d] has no units of norm �1, we can prove this algorithmically by computing

"d and checking it has norm 1. For then ±"
n
d also has norm 1 for all n, i.e., Ud = U

+
d .
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5.4 Continued fractions

In the last section, we described how to find all solutions to Pell’s equation in terms of the
fundamental +unit "

+
d . Earlier, we also presented a naive algorithm to compute "d and

"
+
d . The problem is that as d gets even moderately large, the naive algorithm is not very

efficient. This is already suggested by the case of d = 29 in Example 5.3.4. Here is a more
impressive example:

Example 5.4.1. When d = 61, "
+
d = 1766319049 + 226153980

p
61, i.e., the smallest

positive nontrivial solution to x
2
� 61y2 = 1 is (1766319049, 226153980).

The above example was discovered by Bhaskara II in the 12th century in India, and
independently (much later) rediscovered by Fermat in Europe. How can one find such solu-
tions, especially without powerful computing devices? The answer come from an alternative
representation of numbers, not as decimals, but as continued fractions.

First we explain the continued fraction expansion with an example.

Example 5.4.2. Consider a
b = a1

b1
= 13

5 , which we write as a whole number plus a
remainder:

a1

b1
=

13

5
= 2 +

3

5
.

Now we can’t exactly repeat this on the remainder, but we can on its reciprocal :

a2

b2
:=

5

3
= 1 +

2

3
.

Thus we have
a

b
= 2 +

1

3/2
= 2 +

1

1 + 2
3

.

Now repeat again with the reciprocal of the remainder in a2
b2

:

a3

b3
:=

3

2
= 1 +

1

2
.

If we do this again, we get:
a4

b4
=

2

1
= 2,

a rational with no remainder, and so we stop. This leads to the following expression:

a

b
=

13

5
= 2 +

1

1 + 1

1 + 1

2

,

which we call the continued fraction expansion of 13
5 . Note that because at each stage we

are taking reciprocals, we’ll see a sequence of 1’s going down, and all that matters are the
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numbers in the boxes. To simplify notation, we will also write this as

[2, 1, 1, 2] = 2 +
1

1+

1

1+

1

2
= 2 +

1

1 + 1
1+ 1

2

Definition 5.4.1. Let x 2 R. The continued fraction expansion of x is the expression
[q1, q2, q3, . . .] = q1 +

1
q2+

1
q3+

· · · where q1 2 Z and qj 2 Z�0 for j � 2 are defined as follows:

• q1 = bxc is the greatest integer  x, so 0  r1 < 1 where r1 = x� q1;

• for j � 1, inductively set

qj+1 =

(
b
1
rj
c(the greatest integer  rj) rj 6= 0

0 rj = 0,

so rj+1 := rj � qj satisfies 0  rj+1 < 1.

If rj = 0 for all j > m, we also write the continued fraction expansion as the finite
sequence [q1, . . . , qm] = q1 + 1

q2+
1

q3+
· · ·

1
qm

, in which case we call the continued fraction
expansion finite.

The qj and rj is used to make you think that these quantities are like quotients and
remainders (which they are if x is rational). The rounding down function x 7! bxc (also
often denoted by x 7! [x]) is called the greatest integer function or the floor function.

Note for any x 2 R, there is a unique continued fraction expansion [q1, q2, . . .]. Moreover,
since at each step 0  rj < 1, the reciprocal will be at least 1 if rj 6= 0, and so qj+1 = 0 if
and only if rj = 0.

Exercise 5.4.1. Compute the continued fraction expansion of 80
17 .

Exercise 5.4.2. Let x 2 R, and [q1, q2, . . .] be the continued fraction expansion. Let
(xn) denote the sequence of rational numbers by evaluation the partial continued fraction
expansions:

xn = q1 +
1

q2 +
1

. . .+ 1
qn

.

Show limn!1 xn = x.

Exercise 5.4.3. For x 2 R, show the continued fraction expansion for x is finite if and
only if x 2 Q.
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Example 5.4.3. Let’s compute the continued fraction expansion [q1, q2, . . .] of
p
5.

First set
q1 = b

p
5c = 2, r1 =

p
5� 2,

so at the first stage our expansion looks like

p
5 = q1 + r1 = 2 + (

p
5� 2) = 2 +

1

1/(
p
5� 2)

.

The nice thing about quadratic numbers is we can rationalize the denominator in 1p
5�2

by multiplying by the conjugate (in Z[
p
5]) of the denominator. Note N(r1) = r1r1 =

N(�2 +
p
5) = 4� 5 = �1, so 1

r1
= �r1 = 2 +

p
5, i.e.,

1

r1
=

1
p
5� 2

= 2 +
p
5.

So at the next stage we let

q2 = b2 +
p
5c = 4, r2 = 2 +

p
5� q2 =

p
5� 2 = r1.

Thus at the next stage, we have the expansion

p
5 = 2 +

1

4 + 1p
5�2

.

Since r2 = r1, we see that q3 = q2, so r3 = r2 = r1, and so on. So these computations
simply repeat, and we will have qj = 4 for all j � 2, giving the continued fraction expansion

p
5 = [2, 4, 4, 4, . . .] = 2 +

1

4+

1

4+

1

4+
· · · .

Example 5.4.4. Now let’s try finding the continued fraction expansion of
p
3. At the

first stage we have
q1 = b

p
3c = 1, r1 =

p
3� 1.

Then
1

r1
=

1
p
3� 1

p
3 + 1

p
3 + 1

=
1 +

p
3

2
.

So

q2 = b
1 +

p
3

2
c = 1, r2 =

1 +
p
3

2
� 1 =

p
3� 1

2
.

Then
1

r2
=

2
p
3� 1

p
3 + 1

p
3 + 1

= 1 +
p
3.

So
q3 = b1 +

p
3c = 2, r3 =

p
3� 1 = r1.
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Since r3 = r1, we must repeat after this, i.e., q4 = q2, r4 = r2, and so on, giving us the
continued fraction expansion

p
3 = [1, 1, 2, 1, 2, 1, 2, 1, 2, . . .] = 1 +

1

1+

1

2+

1

1+

1

2+
· · ·

Notice the above continued fraction expansions repeat. We make this notion precise as
follows.

Definition 5.4.2. We say a continued fraction expansion [q1, q2, . . .] is periodic if there
exist s � 0 and m 2 N such that

[q1, q2, . . .] = [q1, . . . , qs, qs+1, . . . , qs+m, qs+1, . . . , qs+m, qs+1, . . . , qs+m, . . .],

i.e., if qj+m = qj for all j > s. In this case, we denote this expansion by

[q1, . . . , qs, qs+1, . . . , qs+m].

If the expansion is periodic, the smallest such m for which the above condition holds (for
some s) is called the period of [q1, q2, . . .].

For instance, the examples above say
p
5 = [2, 4] is periodic with period 1 and

p
3 =

[1, 1, 2] is periodic with period 2. Since any rational number has continued fraction expansion
of the form [q1, . . . , qs, 0], any rational number has a periodic continued fraction expansion
with period 1. Note periodic continued fractions can be specified by a finite amount of data.

Theorem 5.4.3 (Lagrange). For any x 2 R, the continued fraction expansion of x is periodic
if and only if x 2 Q(

p
d) for some d � 1. In particular the continued fraction expansion of

any element of Z[
p
d] is periodic.

Due to lack of time, we won’t prove this. But the idea of the proof for the “if” direction
is that at each stage in the continued fraction expansion, the quantities 1

rj
will be elements

of Q(
p
d) satisfying certain conditions, and then showing that there are only finitely many

possibilities, so for some j,m � 1, we have rj+m = rj by the pigeonhole principle.
The “only if” direction is easier. For simplicity, we just illustrate the special case s = 0,

so x = [q1, . . . , qm] (what is called purely periodic). Consider ↵ = [q1, . . . , qm] 2 Q. Then

x = ↵+
1

↵+ 1
↵+···

.

Then
x� ↵ =

1

↵+ 1
↵+···

,

so taking reciprocals shows
1

x� ↵
= ↵+

1

↵+ 1
↵+···

= x,

i.e.,
1 = (x� ↵)x = x

2
� ↵x,

so x
2 satisfies the quadratic equation x

2
�↵x� 1 = 0 with rational coefficients, from which

it follows x 2 Q(
p
d) where d = ↵

2 + 4.
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Exercise 5.4.4. Compute the continued fraction expansion of
p
2.

Exercise 5.4.5. Compute the continued fraction expansion of
p
7.

Now we explain (without proof) the connection with Pell’s equation and fundamental
units. Assume d > 1 is squarefree, and write

d = [q1, . . . , qs, qs+1, . . . , qs+m]

where s and m are chosen minimally so we can represented this continued fraction period-
ically. In particular m is the period. Consider the partial continued fraction expansions
[q1, . . . , qn]. These are rational numbers, so we write them as

xn

yn
= [q1, . . . , qn], xn, yn 2 N, gcd(xn, yn) = 1.

As they converge to
p
d (Exercise 5.4.2), we call (xn, yn) the n-th convergent of the con-

tinued fraction.

Theorem 5.4.4. For d > 1 squarefree, let (xn, yn) be the n-th convergent in the continued
fraction expansion of

p
d. Then xm + ym

p
d is the fundamental unit "d, where m is the

period of this continued fraction. More generally, xkm + ykm

p
d is "

k
d for k � 1.

So in summary, we used units in real quadratic fields to determine all solutions to Pell’s
equation in terms of "d. Now we know how to compute "d in terms of continued fractions,
and thus determine all solutions to Pell’s equation. Moreover, this allows us to construct
good rational approximations to

p
d. Of course, using continued fractions directly gives us

rational approximations to
p
d, but in some sense the ones coming from solutions to Pell’s

equation (or x
2
� dy

2 = �1) are optimal in that they will have minimal remainder (see
Proposition 5.2.3). (We also haven’t proved that the continued fraction convergents give us
good rational approximations, though one can prove this.)

Example 5.4.5. Recall
p
5 = [2, 4], which has period 1. So we look at the first convergent

is given by
x1

y1
= [q1] = [2] =

2

1

so the theorem says "5 = 2 +
p
5, which matches with Example 5.3.2.

Example 5.4.6. Recall
p
2 = [1, 1, 2], which has period 2. Thus the second convergent is

given by
x2

y2
= [1, 1] = 1 +

1

1
=

2

1
,

so the theorem says "3 = 2+
p
3, which matches what you should have got in Exercise 5.3.1.
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Exercise 5.4.6. Use the continued fraction expansion of
p
7 to compute "7 (see also

Example 5.3.3). Then obtain a rational approximation to
p
7 accurate to within 1

100 .

Exercise 5.4.7. Use the continued fraction expansion of
p
19 to compute "19. Use "19

to obtain a rational approximation to
p
19 accurate to within 1

1000 . (You may use a
calculator.)

Exercise 5.4.8. Use continued fractions to obtain the expression for "
+
61 asserted in Ex-

ample 5.4.1. (You may use a calculator.)

5.5 Aftermission: fundamental units and Fibonacci numbers

We close this chapter with an amusing connection with fundamental units and Fibonacci
numbers, following ideas that we used to solve Pell’s equation.

The golden ratio � = 1+
p
5

2 is the fundamental unit for the full ring of integers Z[1+
p
5

2 ].
For x, y 2 Z, note

N(x+ y
1 +

p
5

2
) = (x+ y

1 +
p
5

2
)(x+ y

1�
p
5

2
) = x

2 + xy � y
2
.

This expression is a binary quadratic form, which we also denote

Q(x, y) = x
2 + xy � y

2
.

Recall the Fibonacci numbers Fn are defined by

F1 = F2 = 1, Fn+2 = Fn+1 + Fn, n � 1.

Exercise 5.5.1. Show the Fibonacci numbers satisfy F
2
2n+2 + 1 = F2n+2F2n+1 + F

2
2n+1.

Put another way, the exercise says that (F2n+1, F2n+2) are solutions to

Q(x, y) = 1,

which is an analogous equation to Pell’s equation. In other words

F2n+1 + F2n+2
1 +

p
5

2
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is a unit of norm 1 in Z[1+
p
5

2 ].
Note the golden ratio � has norm �1, but it square " = �

2 = 3+
p
5

2 has norm 1 (i.e., is
the fundamental +unit in Z[1+

p
5

2 ]. Then we can write

" =
3 +

p
5

2
= 1 + 1 ·

1 +
p
5

2
= F1 + F2

1 +
p
5

2
.

Computing a couple of powers of ", we see

"
2 =

7 + 3
p
5

2
= 2 + 3 ·

1 +
p
5

2
= F3 + F4

1 +
p
5

2
,

"
3 =

47 + 21
p
5

2
= 13 + 21 ·

1 +
p
5

2
= F5 + F6

1 +
p
5

2
.

This is part of a general rule.

Exercise 5.5.2. Compute "
4 directly and then check that "4 = F7 + F8

1+
p
5

2 .

Exercise 5.5.3. Prove that "
n = F2n�1 + F2n� for n � 1.

The above expression gives a way to compute Fibonacci numbers. While it’s not exactly
presented as a formula for Fn, you probably noticed in the calculations above you immedi-
ately see F2n as the coefficient b in the expression "

n = a+b
p
5

2 , and then a is just b+2F2n�1.
One can rewrite these calculations into a well-known formula for Fn:

Exercise 5.5.4. Prove that Fn = �n��
n

���
for n � 1.
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