
Chapter 2

Factorization

In this chapter, we will prove the fundamental theorem of arithmetic, i.e., the uniqueness
of prime factorization for natural numbers. However, we will set up the framework for this
more generally. This is for two reasons. First, we will want to use uniqueness of prime
factorization for some quadratic rings as well, so we want to be able to prove it for the
Gaussian integers, for instance. Second, your familiarity with unique factorization makes it
harder to appreciate—unique factorization is a nontrivial property and it does not hold for
many rings. I hope that putting unique factorization in the context of more general rings—
and seeing how it fails for some quadratic rings—may help you appreciate how special it
is.

To do this, we need to figure out what the right notion of unique factorization is in
general. Let’s recall our previous statement of the fundamental theorem of arithmetic:

Theorem 2.0.1 (Unique factorization for N). Let n > 1 be a natural number. Then n factors
into a product of prime numbers. Moreover, this factorization is unique up to reordering,
i.e., if

n = p1p2 · · · pr = q1q2 · · · qs,
where the p

i

’s and q0
j

are primes, and are ordered so that

p1  p2  · · ·  p
r

, q1  q2  · · ·  q
s

,

then r = s and p
i

= q
i

for each 1  i  r.

We’d like to talk about factorization in rings, so let’s think about how we can restate
this for Z. We just need to say any integer n which is not 0 or ±1 is ±1 times a product of
primes, and the primes in this product are uniquely determined.

Theorem 2.0.2 (Unique factorization for Z). Let n 2 Z be nonzero and n 6= ±1. Then
we can write n = up1p2 · · · pr, where u = ±1 and p1, p2, . . . , pr are prime. Moreover, this
factorization is unique up to reordering, i.e., if

n = up1p2 · · · pr = u0q1q2 · · · qs,
where u and u0 are ±1, and the p

i

’s and q0
j

are primes ordered so that

p1  p2  · · ·  p
r

, q1  q2  · · ·  q
s

,

then r = s and p
i

= q
i

for each 1  i  r.
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Note that the sign u is also uniquely determined, though we did not state this. Moreover,
if we want to, we can actually omit the condition that n 6= ±1 by allowing r to be 0, i.e.,
allowing the “factorization” n = u.

2.1 Units, irreducibles and existence of factorizations

To generalize the notion of unique factorization from Z to more general rings R, we need to
introduce some terminology. We will primarily be concerned with the cases of R = Z and
R is a quadratic ring. To treat these uniformly, we will define

Z[
p
d] = Z if d is a square.

E.g., Z = Z[
p
1]. This coincides with the notion that Z[

p
d] is the ring obtained by adjoining

a square root of d to Z—if d is already a square, there is nothing to add. Thus Z[
p
d] for

d 2 Z will either mean Z or a quadratic ring Z[
p
d] for some non-square d. (Recall, there

are other quadratic rings, like Z[⇣3], but for simplicity we will not worry about those now.)
We will also want to talk about the “size” of integers, as we want to think about the

factorization of a number as breaking a number into “smallest possible” components. The
norm provides a measure of size for quadratic rings, so the norm will be key for us. So that
we can talk about the norm N on Z[

p
d] in all cases, we simply define the norm on Z to

be N(n) = n when Z[
p
d] = Z.1 (We note that one could alternatively take something like

N(n) = |n| or N(n) = n2 for what we are going to do, but it is standard to define the norm
on Z to just be the identity map.)

Then, for any d 2 Z, we have the following key properties of the norm map N on Z[
p
d]:

• N : Z[
p
d]! Z, i.e., the norm of any element of Z[

p
d] is an integer;

• N(xy) = N(x)N(y), i.e., the norm map is multiplicative; and

• N(x) = 0 if and only if x = 0.

For d nonsquare, the first property followed directly from the definition. The second
property was Exercise 1.5.8. The third is a simple exercise:

Exercise 2.1.1. Let d 2 Z be a nonsquare. For x 2 Z[
p
d], show N(x) = 0 if and only if

x = 0.

Note when d is a square, so Z[d] = Z and N(x) = x, all 3 properties are obvious.
While I often say the norm measures the size of a number, you are probably use to

thinking of size as a positive quantity. Since the norm may be negative, we will sometimes
work with the absolute norm |N(x)|. This is again multiplicative, but now |N(x)| 2 N for
any x 6= 0. In particular, the absolute norm will allow us to use descent, and thus prove the
existence of factorizations.

1Note that for d not a square in Z, the norm map from Z[
p
d] to R sends any n 2 Z to n2. So when we

talk about the norm of an integer, it is important to know whether we mean the norm from Z or the norm
from a quadratic ring Z[

p
d].
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While we will primarily prove things for quadratic rings (and Z), many of the definitions
we will state for more general rings. This way, we can talk about these notions for other
rings like cyclotomic rings as well.2 First, we need the analogue of ±1 in Z.

Definition 2.1.1. Let R be a ring and u 2 R. We say u is a unit in R if u is invertible in
R, i.e., if there exists u�1 2 R such that uu�1

= 1.

Example 2.1.1. Let R = Z and n 2 Z. Let’s prove that n is invertible in Z if and only
if n = ±1. First note that 0 is not invertible, since 0 ·m = 0 6= 1 for all m 2 Z. Then if
n 6= ±1 and n 6= 0, |n| � 2 so |nm| � 2 for any m 2 Z� {0}. Hence the only n which can
be invertible in Z are n = ±1, and they are invertible, with n = n�1. Thus the units of Z
are just ±1.

Note that in the above example, we used size (absolute value) to help us determine what
the units are in Z. We can do something similar for quadratic rings, since we also have a
notions of size for them.

Lemma 2.1.2. Let d 2 Z. Then u 2 Z[
p
d] is a unit if and only if N(u) = ±1, i.e., if and

only if |N(u)| = 1.

Proof. Note we have already done the case of Z[
p
d] = Z in the above example, so we may

assume d is a nonsquare if we wish.
Suppose u 2 Z[

p
d] is a unit. Then u�1 2 Z[

p
d] with uu�1

= 1. Taking the norm of
this equation, and using multiplicativity of the norm, we have

1 = N(1) = N(uu�1
) = N(u)N(u�1

).

Since N(u), N(u�1
) 2 Z, this means they are units in Z, and thus ±1 by the previous

example.
Conversely, if N(u) = uu = ±1, then ±u 2 R and u(±u) = 1. (Here the ± sign is the

same as in N(u) = ±1.)

Hence, thinking of the norm as measuring size in Z[
p
d], the units of Z[

p
d] are the

nonzero elements of Z[
p
d] which are as “small” as possible. Moreover, x 2 Z[

p
d] is a

nonzero non-unit if and only if |N(x)| > 1.

Exercise 2.1.2. Let d 2 Z, and suppose u is a unit in Z[
p
d]. Show N(u�1

) = N(u).

Example 2.1.2. Let R = Z[i]. Then u = a + bi 2 Z[i] can only be a unit if N(u) =

a2 + b2 = 1, i.e., only if u = ±1,±i. Indeed, these are all units as u�1
= u if u = ±1 and

u�1
= �u if u = ±i. Hence the units of Z[i] are {1,�1, i,�i}, i.e., the 4 roots of unity in

Z[i].

2For those that have seen some ring theory before: this terminology we will introduce is usually just given
for (commutative) rings without zero divisors, which are called integral domains. You may assume this if
you wish. If you have no idea what I am talking about, just move along. Nothing to see here.
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Example 2.1.3. Let R = Z[⇣
n

]. Then each root of unity u = ⇣j
n

is a unit in R: it’s
inverse is just u�1

= ⇣n�j

n

2 R. Note it is not necessarily just powers of ⇣
n

that are units
in R—e.g., recall we have ⇣6 2 Z[⇣3] and it is easy to see ⇣6 is a unit in Z[⇣3]. However, one
can show that the units in R = Z[⇣

n

] (or in any imaginary quadratic ring R) are precisely
roots of unity which are contained in R, which are either the collection of the n-th roots
of unity or the 2n-th roots of unity, depending on whether n is even or odd.

In the above two examples, there are were only finitely many units. We will see in
Chapter 5 that real quadratic rings have infinitely many units: they are the integer solutions
to x2�dy2 = ±1 for some d > 0. However imaginary quadratic rings (and cyclotomic rings)
always have finitely many units, which makes them easier to deal with in some sense. It is
easy to determine the units of imaginary quadratic rings:

Proposition 2.1.3. Let R be Z or an imaginary quadratic ring Z[
p�d] for some d > 0.

Then the set of units in R is simply {±1} except in the special case R = Z[i] when it is
{±1,±i}.

Note the above statement needs to be changed if we allow for more general imaginary
quadratic rings, like Z[⇣3]. But even then, it turns out that Z[i] and Z[⇣3] are the only
imaginary quadratic rings with more than 2 units.

Proof. We’ve already treated Z and Z[i] in examples above, so we just need to consider
R = Z[

p�d] for d > 1 and show any unit of R must be ±1. Let u = a + b
p�d be such

a unit. Then N(u) = a2 + db2 = 1 by Lemma 2.1.2. (Note for imaginary quadratic fields,
since the norm is never negative, we can’t have N(u) = �1.) But b 6= 0 implies N(u) > 1.
Hence we must have u = a 2 Z, whence u = ±1.

Definition 2.1.4. Let R be a ring and x 2 R be a nonzero non-unit. We say x is re-

ducible if there exist nonzero non-units a, b 2 R such that x = ab. Otherwise, we say x is
irreducible.

The condition on x in the first sentence means that will not consider 0 or units to be
reducible or irreducible.

Example 2.1.4. Let R be a field. Then any nonzero u 2 R is a unit, by the definition
of field. Hence we do not consider any elements of a field to be reducible or irreducible.
The point is that there’s not much sense in talking about factorization in fields, as we can
always pull out any factor we want. For instance, think about Q. Take any nonzero x 2 Q,
say x = 3. Given any nonzero y 2 Q, e.g., y =

53
2 , we can factor y out of x via x = y · x

y

,
e.g., 3 =

53
2

6
53 .

Example 2.1.5. Let R = Z. Then n 2 R being irreducible just means that n 62 {�1, 0, 1}
and n cannot be written as a product of two numbers except in trivial ways like n = 1 · n
or n = (�1)(�n). Hence n irreducible just means that n = ±p for some prime p 2 N.
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Note that the above definition of irreducible is essentially the same as our definition
for prime in N (elements of N which have exactly 2 factors). Being irreducible in a ring
R essentially means we can’t break it into “smaller” factors. You might want to call such
elements prime, however the word prime is reserved for having a further property which we
will define below. (Of course, it turns out for Z, all irreducibles have this property, so being
irreducible will be the same as being prime.)

Example 2.1.6. Let R = Z[i]. Then 2 = (1 + i)(1� i) is a product of two non-units, so
2 is reducible in Z[i]. On the other hand, we can show 1 + i and 1 � i are irreducible in
Z[i]. Let x = 1± i. Then N(x) = 1

2
+1

2
= 2, so x is a nonzero non-unit. If x is reducible,

we have x = ab for some nonzero non-units a, b 2 Z[i]. Then 2 = N(x) = N(a)N(b) and
|N(a)|, |N(b)| > 1, but the latter condition implies |N(a)N(b)| � 2 ·2 � 4, a contradiction.
Thus x must be irreducible.

The argument in the above example generalizes:

Exercise 2.1.3. Let d 2 Z and x 2 Z[
p
d]. Show that if |N(x)| is a prime in N, then x is

irreducible.

Exercise 2.1.4. Show 17 is reducible in Z[i], and find a factorization of 17 into irreducibles.

Exercise 2.1.5. Show 3 is irreducible in Z[i], even though N(3) is not prime.

The first step in factorization is noting that we can always break (nonzero non-unit)
elements up into a product of irreducibles, i.e., we have some factorization.

Proposition 2.1.5 (Existence of factorization). Let d 2 Z. Then any non-zero nonunit
x 2 Z[

p
d] can be factored into irreducibles: x = a1a2 · · · ar for some irreducibles a1, . . . , ar

in Z[
p
d].

Proof. This proof follows the same descent strategy we employed in the case of Z in Propo-
sition 1.1.3, so we will be briefer in our explanation of this proof.

Either x itself is irreducible or not. If it is irreducible, then we can take r = 1 and
a1 = x, and we are done. So assume x is reducible. Then we can write x = y1y2 for
some nonzero non-units y1, y2 2 Z[

p
d]. By multiplicativity of the norm, we have N(x) =

N(y1)N(y2) so |N(x)| = |N(y1)||N(y2)|. Since y1, y2 are nonzero non-units, we must have
1 < |N(y1)|, |N(y2)| < |N(x)|.

Now it suffices to show that y1, y2 factor into irreducibles. We simply repeat the above
argument, which must eventually terminate by descent on the absolute norm. Thus x factors
into irreducibles by a similar argument as in Proposition 1.1.3.

We note there are rings where not all elements are finite products of irreducible elements,
but may be infinite products of irreducible elements. However, we will not work with such
rings in this course.

63



Number Theory 2. Factorization Kimball Martin

2.2 Primes and unique factorization

Definition 2.2.1. Let a, b 2 R. We say b divides a, or b is a divisor of a and write b | a,
if a = bc for some c 2 R. If b does not divide a, we write b - a.

One way to think about role of units in arithmetic is that multiplication by units does
not affect the divisibility of numbers. More precisely:

Exercise 2.2.1. Let a, a0, b 2 R. We say a0 is an associate of a if a0 = au for some unit
u of R.

(i) Suppose a0 is an associate of a. Show b | a () b | a0, i.e., a and a0 have precisely
the same divisors.

(ii) Suppose R = Z[
p
d]. Show conversely that if a, a0 have exactly the same divisors,

then a0 is an associate of a.

Definition 2.2.2. Let p 2 R. If for all a, b 2 R, p | ab implies p | a or p | b, we call p
prime. If every irreducible in R is prime, we say R has the prime divisor property.

That is to say, a prime is something with the property that if it divides the product of two
things, it must divide one or the other (and possibly both). It is not true that irreducible
elements are always prime (e.g., Example 2.2.2 below), and this issue is intimately tied
up with unique factorization. On the other hand, we can prove that prime elements are
automatically irreducible.

Proposition 2.2.3. Let d 2 Z. If p is a prime in Z[
p
d], then p is irreducible.

Proof. (Contradiction.) Suppose p 2 Z[
p
d] is prime, but p is reducible. Say p = ab

where a, b are nonzero nonunits. So |N(a)|, |N(b)| > 1 and |N(p)| = |N(a)||N(b)| then
implies |N(a)|, |N(b)| < |N(p)|. Then p|ab so p|a or p|b by primality. Interchanging a
and b if necessary, we may assume p|a. Hence a = pc for some c 2 Z[

p
d]. But then

|N(a)| = |N(p)||N(c)| implies |N(p)|  N(a), contradicting |N(a)| < |N(p)|.
Next we will show that the prime divisor property is precisely what we need for unique

factorization.

Definition 2.2.4. We say a ring R has unique factorization if (i) any nonzero non-unit
x 2 R has a factorization x = a1 · · · ar into irreducibles, and (ii) any two factorizations of
x = a1 · · · ar = b1 · · · bs into irreducibles are the same up to ordering and units, i.e., after
relabeling b

j

’s if necessary, we have s = r and there exist units u1, . . . , ur 2 R such that

b1 = u1a1, b2 = u2a2, . . . , b
r

= u
r

a
r

.

The first part of the definition just says that we can always factor elements of R (besides
0 and units), which we already know for R = Z[

p
d] (Proposition 2.1.5). The second part of

the definition is the uniqueness statement. Let’s think about what it says for Z. E.g., take
n = �12. The irreducible factors of n are ±2 and ±3, and there are different ways we can
write n as a product of irreducibles, e.g.,

�12 = (�2) · 2 · 3 = (�3)(�2)(�2).
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However, these different factorizations are not essentially different: they only differ up to
order and signs (units). Reordering the second factorization as (�2)(�2)(3), we see that all
the factors match up up to units:

�2 = �2, �2 = (�1)2, (�3) = (�1)3.

This is what the second part of the definition of unique factorization is about.
Here is another example of two factorizations which are the same up to ordering and

units, which is perhaps less obvious at first glance.

Example 2.2.1. In Z[i] we have the factorizations

5 = (2 + i)(2� i) = (1 + 2i)(1� 2i).

By Exercise 2.1.3, the elements 2 + i, 2 � i, 1 + 2i and 1 � 2i are all irreducible as their
absolute norms are all 5. We claim these factorizations are the same up to ordering and
units. Recall the units of Z[i] are ±1,±i. Note i(2 + i) = 2i � 1 and i(2 � i) = 2i + 1.
Hence we can write each factor of the second factorization above as a unit times a factor
of the first factorization as:

1 + 2i = i(2� i), 1� 2i = (�i)(2 + i).

Exercise 2.2.2. Show that Z[
p�3] has no element of norm 2. Deduce that any x 2

Z[
p�3] with N(x) = 2 is irreducible.

Example 2.2.2. In Z[
p�3] we have the factorizations

4 = 2 · 2 = (1 +

p�3)(1�p�3).

Since 2, 1+
p�3, and 1�p�3 all have norm 2, both of these are irreducible factorizations.

But by Proposition 2.1.3, the only units of Z[
p�3] are ±1 so 1±p�3 does not differ from

2 by a unit. Hence these two irreducible factorizations are truly different: they are not the
same up to ordering and unit.

Consequently, this failure of unique factorization demonstrates irreducibles which are
not prime, i.e., do not satisfy the prime divisor property. Namely 2|(1+p�3)(1�p�3) = 4,
but 2|(1 ± p�3) because the 1 ± p�3 is irreducible and does not differ 2 by a unit.
(Alternatively, you can also easily prove this by contradiction by writing 1 ± p�3 =

2(a + b
p�3) and solving for a, b.) Hence 2 is irreducible but not prime in Z[

p�3]. A
similar argument shows 1±p�3 is also irreducible but not prime in Z[

p�3].

Theorem 2.2.5. Let d 2 Z. If Z[
p
d] has the prime divisor property, then Z[

p
d] has unique

factorization.

Proof. By Proposition 2.1.5, we already know the existence of irreducible factorizations, so
it suffices to check the second part of the definition of unique factorization. We do this
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by contradiction. Namely, assume Z[
p
d] has the prime divisor property, but there exists a

non-zero nonunit x which has two irreducible factorizations

x = a1 · · · ar = b1 · · · bs
that are not the same up to ordering and units.

If some factors of these two factorization are the same up to units, e.g., a
r

= ub
s

so
multiplying by a�1

r

gives a1 · · · ar�1 = ub1 · · · bs�1, we can cancel off any common (up to
units) factors, and reorder/relabel to get two nonempty collections of irreducibles a1, . . . am
and b1, . . . , bn and a unit u such that

a1 · · · am = ub1 · · · bn (2.2.1)

but no a
i

differs (multiplicatively) from any b
j

by a unit. Put another way, no a
i

divides
any b

j

.
Necessarily m,n > 1. To see this, first note that m = n = 1 implies a1 = ub1 so a1

and b1 differ units, which would be a contradiction. Hence at least one of m and n is bigger
than 1, say n > 1 but m = 1. Then a1 = ub1 · · · bn, contradicting the irreducibility of a1.
Similarly m > 1 and n = 1 is impossible, so m,n > 1 as claimed. (Actually, we only need
n > 1 below.)

Then (2.2.1) implies
a1 | b1 · · · bn = b1 · (b2 · · · bn),

so by the prime divisor property a1 | b1 or a1 | b2 · · · bn. The former is impossible as we have
already canceled common (up to units) factors, so we must have a1 | b2 · · · bn. If n = 2, this
means a1 | b2, which is again impossible. Hence n > 2 and we have

a1 | b2(b3 · · · bn).

Repeating this argument with the prime divisor property (i.e., use descent), we see that in
the end we have a1 | bn, giving us our desired contradiction.

Exercise 2.2.3. Let R = Z[
p
d] for some d 2 Z. Deduce from the above theorem that

R has unique factorization if and only if it has the prime divisor property. (Suggestion:
Reread Example 2.2.2.)

We remark that the results in this section and the previous one apply to more general
rings than those of the form R = Z[

p
d]. The key feature we needed in all of the proofs

was the existence of a norm map N : R ! Z with the properties listed at the beginning of
this section. Cyclotomic rings, and many other rings, have such a norm map. On the other
hand, rings like Z/nZ do not. However, we will see later that most nonzero elements of
Z/nZ are units, so there is not much point in talking about factorization in Z/nZ anyway.
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2.3 The Euclidean algorithm

In the last section, we showed that unique factorization follows from the prime divisor
property for quadratic rings Z[

p
d]. (In fact they are equivalent by Exercise 2.2.3.) Now you

are probably wondering, okay, so how do we prove the prime divisor property for various
rings like Z and Z[i]? The simplest method that I know for Z and Z[i] (and a few other
rings) is via the Euclidean algorithm, which is a way to compute gcds. While this method
does not work for all quadratic rings which happen to have unique factorization, it will be
enough to prove unique factorization in all cases we will use in this course. (Both some rings
with unique factorization, as well as all quadratic rings without unique factorization will
not possess a Euclidean algorithm.) In this section, we’ll review the Euclidean algorithm
in the classical case of integers, and see how it yields the prime divisor property, and thus
the fundamental theorem of arithmetic. Then we’ll look at the Euclidean algorithm for
quadratic fields Z[

p
d] in the next section.

Recall for natural numbers a, b, their gcd or greatest common divisor, denoted
gcd(a, b) is the largest natural number d such that d|a and d|b. Note that gcd(a, b) ex-
ists for all a, b 2 N by the fact that any divisor of a is at most a and descent. There are
different versions and variations of the classical Euclidean algorithm. We present three.
While only the first is needed to prove the prime divisor property for Z, the second is useful
for extending the Euclidean algorithm to Z[i]. The third will be a variant that we use for
a quick detour for describing how to solve another basic number theory problem: how to
solve linear Diophantine equations (in 2 variables).

The gcd by subtraction

Let a, b, d 2 N.
First note that if d is a common divisor of a and b, i.e.,

a = a0d, b = b0d,

for some a0, b0 2 N, then
a� b = a0d� b0d = (a0 � b0)d

so d is a divisor of a � b. Similarly, if d is a common divisor of a � b and b, then it is also
a divisor of a = (a � b) � b. Hence the common divisors of a and b are the same as the
common divisors of a� b and b. In particular,

gcd(a, b) = gcd(b, a� b)

Euclid used this idea to make an efficient algorithm to determine gcd(a, b).
The Euclidean algorithm goes as follows. Set

a1 = max {a, b} , b1 = min {a, b} .

Then we inductively compute

a
i+1 = max {b

i

, a
i

� b
i

} , b
i+1 = min {b

i

, a
i

� b
i

} ,
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stopping only when we have
a
k

= b
k

.

This procedure produces smaller and smaller pairs of natural numbers so must eventually
terminate by descent.3 The max/min business is to ensure we always have a

i

� b
i

so that
the a

i

� b
i

appearing in the next step is positive. You might find it easier to think of this
algorithm as defining a

i+1, bi+1 so that

{a
i+1, bi+1} = {b

i

, a
i

� b
i

} and a
i+1 � b

i+1.

The reason this works is as follows. Since gcd(a, b) = gcd(b, a� b), we have

gcd(a, b) = gcd(a1, b1) = gcd(a2, b2) = · · · = gcd(a
k

, b
k

) = gcd(a
k

, a
k

) = a
k

.

Example 2.3.1. Let a1 = a = 15, b1 = b = 6. Then {b1, a1 � b1} = {6, 9}, so we set
a2 = 9, b2 = 6. Then {b2, a2 � b2} = {6, 3}, so we set a3 = 6, b3 = 3. Similarly, we get
a4 = 3, b4 = 3, at which point the algorithm terminates leaving us with gcd(15, 6) = 3.
Alternatively, without explicitly writing out all the a

i

’s and b
i

’s, we can write the Euclidean
algorithm as

gcd(15, 6) = gcd(9, 6) = gcd(6, 3) = gcd(3, 3) = 3.

Example 2.3.2. Consider a = 18, b = 5. Then we have

gcd(18, 5) = gcd(13, 5) = gcd(8, 5) = gcd(5, 3) = gcd(3, 2) = gcd(2, 1) = gcd(1, 1) = 1.

If gcd(a, b) = 1, we say a and b are coprime or relatively prime.

Exercise 2.3.1. Compute gcd(84, 63) using the above method. Write out each step.

The gcd by division with remainder

A more efficient version of the Euclidean algorithm is as follows. Given a, b 2 N, with a � b,
we can write a = qb+ r for unique q 2 N, r 2 Z�0. We call r the remainder of a/b. Set

a1 = max {a, b} , b1 = min {a, b} ,
a
i+1 = b

i

, b
i+1 = remainder of a

i

/b
i

,

halting when we have a pair
(a

k

, b
k

) with b
k

|a
k

.

Then
gcd(a, b) = b

k

.

This algorithm is essentially the same as the subtraction version, but the division can
do several steps of subtraction at once.

3Keep this in mind for generalization to quadratic rings.
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Example 2.3.3. Let’s revisit Example 2.3.1, i.e., consider a1 = a = 18, b1 = b = 5. We
have 18 = 3 ·5+3, so we set a2 = 5 and b2 = 3 (this 3 is the second one, i.e., the remainder,
not the one in front of the 5). Then we write 5 = 1 · 3 + 2, so we set a3 = 3, b3 = 2.
Similarly, we’ll get a4 = 2, b4 = 1, at which point we conclude the gcd is b4 = 1. Writing
things without the a

i

’s and b
i

’s would be

gcd(16, 5) = gcd(5, 3) = gcd(3, 2) = gcd(2, 1) = 1,

so we’ve saved a couple of steps from the subtraction version, at the expense of needing to
do intermediate division calculations.

Write a and b in binary. Suppose a > b and a is n bits (binary digits) long. Then the
remainder in a/b has at most n�1 bits, so this algorithm will terminate at most n steps. In
other words, if max a, b < 2

n+1, then we can determine gcd(a, b) in at most n steps. This is
as efficient as one could hope for. A computer can handle numbers thousands of digits long in
seconds. We note that computing gcd’s is much easier than factoring numbers—in particular
determining if 2 numbers are coprime is much easier than determining if a given number is
prime. While you can compute gcd’s by factoring and looking at the prime (power) factors
in common, this is very inefficient for large numbers, and the Euclidean algorithm (either
version) is much much better. For instance, even with very advanced algorithms, a modern
computer might take up a year to factor a 200-digit number. This latter fact is important
in modern cryptography, as we will discuss in the next chapter.

Another advantage of the division version is it can deal with other number systems.
E.g., if you want to compute gcd(17, 4+ i) in Z[i], you can divide 17 by 4+ i (and get 4� i
exactly), but subtraction gives you nothing.

Exercise 2.3.2. Compute gcd(42, 8) using the division method. Write out each step.

Linear Diophantine equations

If we go back to the subtraction version of the Euclidean algorithm, it is clear that at each
step a

i

and b
i

are (integral) linear combinations of a and b. Hence

gcd(a, b) = a
k

= ma+ nb (2.3.1)

for some m,n 2 Z.
Recall number theory is about determining integer solutions to Diophantine equations.

The simplest kind of Diophantine equations are linear ones, and the Euclidean algorithm
tells us about such equations in the simplest (nontrivial) case of two variables, i.e., equations
of the form

ax+ by = c,

for a, b, c 2 Z. Here we will apply the Euclidean algorithm to determine completely when
this equation has an integer solution (i.e., a solution (x, y) 2 Z⇥Z), and when it does, how
to find all of them.
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Note if one of a, b is zero, this degenerates to a trivial situation (e.g., ax = c or 0 = c),
so let’s assume a, b 2 Z are nonzero. We extend the gcd to nonzero a, b 2 Z by setting
gcd(a, b) = gcd(|a|, |b|). (We will give a more general definition of gcd later.)

Proposition 2.3.1. Let a, b 2 Z be nonzero. Then ax + by = c has an integer solution
(x, y) 2 Z⇥ Z if and only if gcd(a, b) | c.
Proof. ()) If there is a solution, then

gcd(a, b) | ax and gcd(a, b) | by =) gcd(a, b) | c.

(() If gcd(a, b) | c, we can write c = gcd(a, b)d. By the Euclidean algorithm we have
gcd(a, b) = am+ bn as in (2.3.1), for for some m,n 2 Z, which implies

c = gcd(a, b)d = amd+ bnd.

To actually find solutions to an equation ax+by = c, we need not only gcd(a, b) but also
the m and n in (2.3.1). This can be done through a variety of equivalent methods, sometimes
called the extended Euclidean algorithm. We will present the tableau method, which
is more efficient than version many number theory texts present. For simplicity, we just
present this method by way of example.

Consider a = 34, b = 19. The idea is to use a little linear algebra, and is similar to matrix
row reduction, but we build a table, starting with the following two rows. For clarification
I will write the underlying equation on the right, though in practice you will omit this.

m n x  ! ma+ nb = x
1 0 34 1 · a+ 0 · a = 34

0 1 19 0 · a+ 1 · b = 19

The entries running down the x column will just be the successive numbers a1, b1, b2, . . . , b
k

from the division algorithm. The m and n entries for the b
i

row will just be the coefficients
needed for ma + nb = b

i

. For example, here b2 = a1 � b1, so the next row will just be
obtained by subtracting the second from the first (do this to each column) to get

m n x  ! ma+ nb = x
1 0 34 1 · a+ 0 · a = 34

0 1 19 0 · a+ 1 · b = 19

1 1� 15 1 · a� 1 · b = 15

We do this again to get

m n x  ! ma+ nb = x
1 0 34 1 · a+ 0 · a = 34

0 1 19 0 · a+ 1 · b = 19

1 �1 15 1 · a� 1 · b = 15

�1 2 4 �1 · a+ 2 · b = 4
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Now 4 goes into 15 3 times, so we should subtract 3 times the last row from the previous
row to get

m n x  ! ma+ nb = x
1 0 34 1 · a+ 0 · a = 34

0 1 19 0 · a+ 1 · b = 19

1 �1 15 1 · a� 1 · b = 15

�1 2 4 �1 · a+ 2 · b = 4

4 �7 3 4 · a� 7 · b = 3

With one more step we are done:

m n x  ! ma+ nb = x
1 0 34 1 · a+ 0 · a = 34

0 1 19 0 · a+ 1 · b = 19

1 �1 15 1 · a� 1 · b = 15

�1 2 4 �1 · a+ 2 · b = 4

4 �7 3 4 · a� 7 · b = 3

�5 9 1 �5 · a+ 9 · b = 1

We know we are done now because the last b
j

(x = 1) divides the previous b
j

(x = 3). Hence
the tableau method has shown two things:

gcd(a, b) = gcd(34, 19) = 1,

which one already gets from the usual Euclidean algorithm, and

gcd(a, b) = �5a+ 9b, i.e. 34(�5) + 19(9) = 1,

which one does not. From the latter fact, we can explicitly find integer solutions x, y to

ax+ by = 34x+ 19y = c,

for any c 2 Z, as in the proof of Proposition 2.3.1. For instance, if c = 5, then we can
multiply the equation before the last by 5 to get a solution

34(�25) + 19(45) = 5,

i.e., x = 5(�5), y = 9(5) is a solution to 34x+ 19y = 5.

Exercise 2.3.3. Use the tableau method to compute gcd(120, 39), and use the outcome
to find an integer solution to 120x+ 39y = 6.

Now that we know precisely when a 2-variable linear Diophantine equation ax+ by = c
is solvable, and how to find a single solution, you might ask how do we determine all
integer solutions. Because the equation is linear, we can do the same thing one does in
linear algebra: we can combine one inhomogeneous solution (the case with c 6= 0) with
all homogenous solutions (the case with c = 0). There are infinitely many homogenous
solutions, and they are easy to describe:
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Exercise 2.3.4. Let a, b 2 Z be nonzero, and put a0 = a/ gcd(a, b), b0 = b/ gcd(a, b).
Show that the set of solutions to the homogeneous equation

ax+ by = 0 (2.3.2)

are precisely the set
{(x, y) = (kb0,�ka0) : k 2 Z} .

Proposition 2.3.2. Let a, b, c 2 Z with a, b nonzero. Suppose ax + by = c has a solution
(x0, y0) 2 Z ⇥ Z. Then the set of integer solutions to ax + by = c are the ordered pairs of
the form (x0, y0) + (x, y) where (x, y) is a solution to the homogenous equation (2.3.2).

Proof. You should have seen this proof in linear algebra already.
()) Suppose (x1, y1) is another solution to ax + by = c. We want to show it is of the

desired form. Then
(ax1 + by1)� (ax0 + by0) = c� c = 0.

Hence (x, y) = (x1 � x0, y1 � y0) is a solution to (2.3.2).
(() Suppose (x, y) is a solution to (2.3.2). Then

a(x0 + x) + b(y0 + y) = (ax0 + by0) + (ax+ by) = c+ 0 = c

so (x0, y0) + (x, y) is a solution to ax+ by = c.

Exercise 2.3.5. Find all integer solutions to 12x+ 35y = 3.

Unique factorization for Z

Here we will finally complete the proof of the fundamental theorem of arithmetic (stated
variously as Theorem 1.1.1, Theorem 2.0.1 and Theorem 2.0.2). By Theorem 2.2.5, it suffices
to prove Z has the prime divisor property:

Theorem 2.3.3 (Prime divisor property). Let p 2 Z be irreducible, and a, b 2 Z with
a, b 62 {0, 1,�1}. If p | ab, then p | a or p | b. In other words, every irreducible in Z is
prime.

Remark 2.3.4. A consequence of our way of defining primes in rings means that negative
numbers in Z are also prime, i.e., the primes of Z are ±2,±3,±5,±7,±11, . . .. This may
seem strange, but the reason is made more clear when thinking about how to generalize the
notion of prime to other rings like Z[i], where one doesn’t have the notion of positive versus
negative. The point is in general there is no natural way to distinguish one irreducible p from
the set of multiples up where u ranges over units, so it is easiest to call each up prime if p is.
Of course, when we’re working with just the usual integers, it typically suffices to restrict to
positive primes, so in the future when we say something like “Let p be a prime (number)”
without other qualification/context, we will mean p is a prime in N, i.e., a positive prime in
Z by default. If we mean p can be negative, we will say something like “Let p 2 Z be prime.”
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Proof. Suppose p | ab, but suppose p - a. Since p is irreducible but p - a, the only possible
common divisors of p and a are units, i.e., ±1, so gcd(p, a) = 1. Then by Proposition 2.3.1,
there exist m,n 2 Z such that

am+ pn = 1.

Multiplying by b gives
abm+ pbn = b.

Now p | ab by assumption, and clearly p | pbn, so it divides the left hand side of this equation,
and therefore the right, i.e., p | b, which is what we wanted to prove.

This completes the fundamental theorem of arithmetic, i.e., uniqueness of prime factor-
ization for Z.

Exercise 2.3.6. Recall the proof of Lemma 1.5.2, which required using prime factoriza-
tion, i.e., the fundamental theorem of arithmetic. Does the proof only need the existence
of factorization or does it require uniqueness as well? Explain.

2.4 A Euclidean algorithm for (two) quadratic rings

What makes the Euclidean algorithm in Z work was the fact that we could write gcd(a
i

, b
i

) =

gcd(a
i+1, bi+1) where a

i+1 and b
i+1 are smaller than a

i

and b
i

. This was used in both the
subtraction and division versions of the Euclidean algorithm.

For quadratic rings Z[
p
d], recall the notion of size is given by the norm or absolute

norm. However, it is not true in general that if b is “smaller” than a, then a� b is “smaller”
than a in Z[

p
d].

Example 2.4.1. Consider a = 1 + 2i, b = 1 � i 2 Z[i]. Then N(a) = 5, N(b) = 2 but
a� b = 3i has norm N(a� b) = 9.

This suggests we can’t generalize the subtraction version of the Euclidean algorithm to
Z[i] or other quadratic rings, but what about the division version? For that, we used the
fact that for a, b 2 Z with b 6= 0, we can write

a = qb+ r, for some q 2 Z, |r| < |b|. (2.4.1)

(Here I stated this for Z, rather than N, to suggest how to make such a statement for Z[
p
d].

Before, we also assumed a � b, but this is not necessary as if |a| < |b| one can take q = 0,
r = a.) In fact, if we assume r � 0, then q is uniquely determined, but positivity of r is
not actually important for the Euclidean algorithm (nor does it make sense for quadratic
fields). As before, we can treat quadratic rings together with Z uniformly.

Definition 2.4.1. Let d 2 Z. We say Z[
p
d] has the division property if for all a, b 2

Z[
p
d] with b 6= 0, there exist q, r 2 Z[

p
d] such that

a = qb+ r, |N(r)| < |N(b)|. (2.4.2)
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Note that when Z[
p
d] = Z, the division property just means (2.4.1), as |N(r)| = r2 <

|N(b)| = b2 is equivalent to |r| < |b|. Also note when the division property holds, the q and
r in (2.4.2) need not unique, even when Z[d] = Z, e.g., both 7 = 2 ·3+1 and 7 = 3 ·3+(�2)
are in the form (2.4.2).

If Z[
p
d] has the division property, then we will get a Euclidean algorithm, and then

unique factorization.

Lemma 2.4.2. Let a,m 2 Z[
p
d]. Then m|a implies N(m)|N(a) in Z. Moreover, if d < 0,

then any nonzero a 2 Z[
p
d] has only finitely many divisors m.

We’ll see later that real quadratic rings have infinitely many units, which implies that
numbers in real quadratic rings have infinitely many divisors.

Proof. Write a = km for some k 2 Z. Then N(a) = N(k)N(m) by Exercise 1.5.8, hence
N(m)|N(a) in Z.

Now suppose d < 0, which means the norm map is non-negative. Then if m = x+ y
p
d

is a divisor of a, we have N(m) = x2 � dy2  x2 + y2. There are only finitely many choices
for (x, y) 2 Z⇥Z such that x2 + y2  N(a) (e.g., we need |x|, |y| p

N(a)), and thus only
finitely many possibilities for a divisor m of a.

Definition 2.4.3. Let a, b 2 Z[
p
d], not both zero. We say d is a gcd (greatest common

divisor) of a and b if |N(d)| is maximal among elements such that d|a and d|b. Denote the
set of all gcds of a and b by GCD(a, b).

Note if m|a and m|b, then N(m)|N(a) and N(m)|N(b), so if at least one of a, b is
nonzero, |N(m)| is bounded and the set of all common divisors (which is nonempty as it
always contains 1) has an element of maximal absolute norm. Thus GCD(a, b) always exists.
Also, 0 is never a gcd (since 1 is a common divisor), which means if m is a gcd of a and b,
so is �m, and thus gcds are not unique. More generally, if m is a gcd of a and b, then so is
um for any unit u.

For the rest of this section, consider the imaginary quadratic ring Z[
p�d]

with d > 0. This situation is nicer than the real quadratic case because the norm is always
non-negative (it is just the square of a length) and geometrically Z[

p�d] is a lattice in C.
In addition, the main applications we have in mind for unique factorization, besides for Z,
are for certain imaginary quadratic rings.

First we want to show that there is an algorithm to determine, for given a, b 2 Z[
p�d],

if there exist q, r satisfying (2.4.2). In other words, does there exist q 2 Z[
p�d] such that

r = a � qb has norm less than N(b)? We may as well assume N(a) � N(b), otherwise we
just take q = 0, r = a.

Recall that N(r) = rr is simply the square of the distance of r from the origin in C, i.e.,
the square of the distance of a from qb in C. Hence there exist q, r as in (2.4.2) if and only
if there exists q 2 Z[

p�d] such that qb lies in the open disc of radius
p

N(b) about a.
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a
p

N(b)

Now the following norm inequality will be useful.

Lemma 2.4.4. For a, b 2 Z[
p�d], we have N(a+ b)  N(a) + 2

p

N(a)N(b) +N(b).

Proof. One can give an algebraic proof, but a geometric one is easier. Let `1 =
p

N(a) and
`2 =

p

N(b) be the lengths of a and b, thought of as vectors in C. Now the length of a+ b is
at most `1+ `2, from the usual triangle inequality (draw a picture), so

p

N(a+ b)  `1+ `2,
i.e.,

N(a+ b)  (`1 + `2)
2
= N(a) + 2

p

N(a)N(b) +N(b).

We remark the bound in the above lemma is attained if (and only if) a and b are vectors
in the same direction, i.e., b = �a for some positive � 2 Q.

Going back to our problem, if N(r) = N(a � qb) < N(b), then by the lemma (and the
assumption N(a) � N(b)) this means that

N(qb) = N(a� r)  N(a) + 2

p

N(a)N(r) +N(r) < N(a) + 2

p

N(a)N(b) +N(b).

This means we just need to consider q with norms < N(a)/N(b)+
p

N(a)/N(b)+1. Summing
up, this gives the following (non-optimized) algorithm.

Division algorithm for Z[
p�d]

Problem: Given a, b in Z[
p�d], b 6= 0, find q, r 2 Z[

p�d] satisfying (2.4.2), i.e., such that
a = qb+ r and N(r) < N(b)—or show no such q, r exist.

(1) If N(a) < N(b), take q = 0, r = a and we’re done.

(2) Otherwise, determine all q = x + yi
p
d, x, y 2 Z with N(q) = x2 + dy2 < B, where

B = N(a)/N(b)+
p

N(a)/N(b)+1. (So we only need to check |x|  B, |y|  B/
p
d.)

(3) For all such q, compute N(a � qb). If N(a � qb) < N(b), we may take this q with
r = a� qb to satisfy (2.4.2).

(4) If we found no solutions q, r in the previous steps, then there do not exist any, i.e., the
division property fails.

We remark that if desired, all solutions to (2.4.2) can be found if desired in step (3).
Also, we may consider a larger set of q than given by the bound in (2) if we want. E.g.,
for implementation on a computer, we could just write code that does Step (3) for all
q = x+ yi

p
d with |x|, |y|  B. This simplifies the programming slightly at the expense of

making the computer do slightly more work in (3).
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Example 2.4.2. Consider a = 2� 3i, b = 1 + 2i in Z[i]. Note N(a) = 13, N(b) = 5. We
want to consider q with norm < 13/5+

p

13/5+1 < 6. It is easy to see this is the set of q
of the form x+ yi with |x|, |y|  2 and |x|, |y| not both 2. (There are 21 such q.) In this
particular case, we find (by computer) that there are 3 solutions to (2.4.2):

q = �1� i, r = 1, N(r) = 1,

q = �1� 2i, r = i� 1, N(r) = 2,

q = �i, r = �2i, N(r) = 4.

Note that not only are q, r are not unique, the norm of the remainders r are not even
uniquely determined.

Exercise 2.4.1. Consider a = 3�p�2, b = 1 +

p�2 in Z[
p�2]. Find all q, r 2 Z[

p�2]
such that a = qb+ r with N(r) < N(b).

The next exercise shows Z[
p�3] does not have the division property.

Exercise 2.4.2. Consider a = 1+

p�3, b = 2 in Z[
p�3]. Show there are no q, r 2 Z[

p�3]
with a = qb+ r and N(r) < N(b). (You can use the division algorithm but you don’t have
to.)

Theorem 2.4.5. The rings Z[i] and Z[
p�2] have the division property.

Proof. Consider the ring Z[
p�d] for d > 0. Let a, b 2 Z[

p�d] with b 6= 0. Any multiple qb
of b in Z[

p�d] is over the form mb+ni
p
db for some m,n 2 Z, i.e., the set of multiples qb of

b are the lattice in C generated by b and i
p
db. Recall multiplication by i acts as 90-degree

rotation about the origin in C, so i
p
db the point obtained rotating b 90-degrees and scaling

by
p
d.

Now we use the lattice to tile C by rectangles whose vertices are lattice points qb,
specifically translates of the rectangle (by mb and ni

p
db for m,n 2 Z) with vertices 0, b,

i
p
db and b + i

p
db. (See Fig. 2.4.1 for a picture when d = 1, b = 2 + i.) Each of these

rectangles have side lengths
p

N(b) and
p

dN(b).
Now a lies in one of these rectangles R. Furthermore some vertex v = qb of R lies within

distance � of a, where � is one half of the diagonal length of R (the farthest an interior point

of R can be from all vertices happens for the midpoint). It is easy to see � =

p
(1+d)N(b)

2 . If
d  2, then � < N(b). Consequently, r = a� qb satisfies N(r) < N(b).

We wrote the argument above so you can see that it really only works for d = 1, 2.
Moreover, if you think about the geometry of the argument, it seems like the division
property should fail for d � 3. Indeed, we saw in Exercise 2.4.2 it fails for d = 3. However
to prove this more generally, one needs to exhibit a rectangle R as in the above proof and
an element of Z[

p�d] (not just C) which is farther away from every vertex of R than the
shortest side length of R. I will simply leave the d = 5 case for you:
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1�1 2�2 3�3 4�4 5�5

2i

�2i

3i

�3i

4i

�4i

5i

�5i

i

�i

2 + i

�1 + 2i

1 + 3i

a

Figure 2.4.1: Multiples of 2 + i 2 Z[i]

Exercise 2.4.3. Show the division property does not hold in Z[
p�5].

Now that we’ve established the division property for Z[i] and Z[
p�2], we will see how

the Euclidean algorithm extends to these cases.

Euclidean algorithm for Z[
p�d] via division

Problem: Assume Z[
p�d] satisfies the division property, e.g., d = 1, 2. Given a, b in Z[

p�d]
not both 0, find a gcd m of a and b.

(1) Let {a1, b1} = {a, b} such that N(a1) � N(b1). Put i = 1.

(2) If b
i

= 0, we can take m = a
i

to be a gcd of a and b.

(3) Otherwise, apply the division algorithm to write a
i

= q
i

b
i

+r
i

for some q
i

, r
i

2 Z[
p�d]

with N(r
i

) < N(b
i

).

(4) Let a
i+1 = b

i

, b
i+1 = r

i

.

(5) Replace i with i+ 1 and repeat from Step (2).

The proof that this works is similar to the case for Z. With notation as in Step (3), note
any divisor of both a

i

and b
i

is also a divisor of r
i

, and conversly any divisor of r
i

and b
i

is a divisor of a
i

, thus GCD(a
i

, b
i

) = GCD(b
i

, r
i

) = GCD(a
i+1, bi+1). Then by descent on
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the norm of b
i

, eventually some b
k

is 0, whence we are led to GCD(a, b) = GCD(a
k

, 0) Now
note that a

k

is a gcd of a
k

and 0 for any a
k

6= 0 so at some point we get a gcd m = a
k

in
Step (2).

Alternatively, we can replace Step (2) by

(20) If b
i

|a
i

, we can take m = b
i

to be a gcd of a and b.

This is true because we get b
k

= 0 exactly when b
k�1|ak�1. If b

k�1|ak�1, both versions of
the algorithm will output a

k

= b
k�1 as a gcd, but the version using (20) will just make one

less pass. and it will simply terminate the algorithm earlier. However I originally wrote
the algorithm with the formulation in Step (2) because (i) it is easier to formula descent
terminating with b

i

= 0 rather than the condition b
i

|a
i

, and (ii) to test for b
i

|a
i

in general,
you need to first apply the division algorithm in Step (3). That said, in some cases it will
be obvious that b

i

|a
i

(e.g., if b
i

= 1 so 1 is a gcd) so when working out examples by hand
we may use Step (20).

Example 2.4.3. Consider a = 2 � 3i, b = 1 + 2i in Z[i] as in Example 2.4.2. Since
N(a) = 13 > N(b) = 5, we take a1 = a, b1 = b. By Example 2.4.2, there are 3 ways to
write a1 = q1b1 + r1. Let’s see how the algorithm proceeds with these different choices.

If we take q1 = �1� i then r1 = 1, so we take a2 = b1 = 1+ 2i and b2 = r1 = 1. Since
b2 = 1, Step (2’) tells us 1 is a gcd of a and b.

Next, suppose instead we had taken q1 = �1� 2i so r1 = i� 1. Then a2 = 1+ 2i and
b2 = i� 1. Note 1+ 2i = (�i)(i� 1) + i, so we can take q2 = �i, r2 = i, so a3 = i� 1 and
b3 = i. Clearly a3 = 1 · b3 � 1, so we can take a4 = i and b4 = �1. Then Step (2’) tells us
�1 is a gcd of a and b. (In fact, for the second step we could’ve also taken q2 = 1� i and
r2 = 1 which would give 1 as a gcd like in the previous case.)

Finally, suppose we had taken q1 = �i so r1 = �2i. Then a2 = 1 + 2i and b2 = �2i.
We can write 1+2i = (�1)(�2i)+1, so we can take q2 = �1, r2 = 1, which gives a3 = �2i
and b3 = 1. Again this gives us a gcd of 1.

This example show that for given a, b the Euclidean algorithm can produce different
sequences of a

i

’s and b
i

’s, as well result in as different elements of GCD(a, b), because the
division algorithm provides multiple solutions to choose from at each stage. However, in the
case that we have a Euclidean algorithm, or even just unique factorization, all gcd’s of a
and b differ by units, so this algorithm will always output the same final result up to a unit:

Exercise 2.4.4. Prove that if Z[
p�d] has unique factorization, then for a, b 2 Z[

p�d]
not both zero, GCD(a, b) is of the form {mu : u is a unit} for some fixed gcd m of a and
b.

Exercise 2.4.5. Use the Euclidean algorithm to compute a gcd of 5 � 5i and 3 + 4i in
Z[i].

2.5 Unique factorization beyond Z

Now we come to the main results of this chapter beyond the case of Z.
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Theorem 2.5.1. Let d = 1, 2. Then Z[
p�d] satisfies the prime divisor property and has

unique factorization.

Proof. Recall from Theorem 2.2.5 that having the prime divisor property implies unique
factorization (in fact by Exercise 2.2.3 they are equivalent), so it suffices to prove the prime
divisor property. Now that we have a Euclidean algorithm, the proof is similar to that for
Z in Theorem 2.3.3.

Let a, b 2 Z[
p�d] be nonzero nonunits. Suppose p 2 Z[

p�d] is irreducible and p|ab but
p - a. To prove the prime divisor property, it suffices to show p|b. Since p is irreducible, its
only divisors are of the form u and up where u is a unit of Z[

p�d]. Since p - a, up - a for
any unit u, hence GCD(p, a) = {u : u is a unit}.

Now, since we have a Euclidean algorithm for d = 1, 2, we can apply it to {a1, b1} =

{p, a}. Then after one pass we have a2 = b1, b2 = r1 = a1 � q1b1 (in the notation of
the algorithm in the previous section), i.e., either {a2, b2} = {a, p� q1a} or {a2, b2} =

{p, a� q1p} (basically depending on whether N(p) � N(a) or not). Inductively, it follows
that at each step in this algorithm, a

i

and b
i

are Z[
p�d]-linear combinations of a and p,

i.e., of the form xa+ yp for some x, y 2 Z[
p�d].

Since we eventually arrive at some a
k

being a gcd u 2 GCD(p, a), we have

ax+ py = u,

for some x, y 2 Z[
p�d] and some unit u. (Replacing x, y with u�1x, u�1y, we could assume

u = 1 if we want.) Multiplying by b gives

abx+ pby = ub.

Since p divides the left hand side, p|ub, whence p|b.
One of the main results of this course will be a proof of Fermat’s classification of which

numbers n are sums of two squares, i.e., when is x2 + y2 = n solvable for x, y 2 Z? We will
use unique factorization in Z[i] to prove this, and similarly one can use unique factorization
in Z[

p�2] to determine when x2 +2y2 = n has a solution. We will get to this in Chapter 4
after first treating modular arithmetic in Chapter 3.

The reason for this ordering is that I’m trying to roughly organize the chapters by
topics, and wanted to prove the fundamental theorem of arithmetic before doing modular
arithmetic, as we will talk about factorization problems related to cryptography in that
chapter. But we will also use modular arithmetic in the determination of numbers which are
sums of 2 squares, so that needed to go before we get our main application of Theorem 2.5.1.
However, since we worked so long to get this theorem, I’d like to show you know how to get
a nice application right now. Here is one, though I leave some details to the exercises.

Definition 2.5.2. Let d 2 Z and a, b 2 Z[
p
d]. We say a and b are relatively prime (or

coprime) if 1 is a gcd of a and b.

Proposition 2.5.3. The only solution to y3 = x2 + 2 in N is (x, y) = (5, 3).

Proof. Suppose
y3 = x2 + 2 = (x+

p�2)(x�p�2).
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It is not hard to show that x +

p�2 and x � p�2 are relatively prime in Z[
p�2] (first

exercise below). Since their product is a cube (i.e., of the form a3 for some a 2 Z[
p�2]),

then both x +

p�2 and x � p�2 are cubes by unique factorization in Z[
p�2] (second

exercise below). Write

x+

p�2 = (m+ n
p�2)3 = m2 � 6mn2

+ (3m2n� 2n3
)

p�2
for some m,n 2 Z. Hence

x = m3 � 6mn2
1 = n(3m2 � 2n2

).

From the second equation, we have n = ±1 and 3m2 � 2n2
= 3m2 � 2 = 1, so m = ±1 and

x = ±5.

Exercise 2.5.1. Suppose x, y 2 N such that y3 = x2
+ 2. This is how to prove x+

p�2
and x�p�2 are coprime in Z[

p�2].
(i) Show x must be odd.
(ii) Show for any odd x 2 Z, x+

p�2 and x�p�2 are coprime in Z[
p�2]. (Suggestion:

Try adding and subtracting these two quantities.)

Exercise 2.5.2. Let d = 1, 2. Use Theorem 2.5.1 to show that if ab is a cube in Z[
p�d]

and a and b are relatively prime, then a and b are cubes in Z[
p�d].

Now that we’ve seen some concrete utility of unique factorization in quadratic rings, you
might wonder for what other quadratic rings one gets unique factorization. You might be
worried from our proof of the division algorithm that we don’t actually get unique factor-
ization for any other imaginary quadratic rings. However, that’s not exactly true.

Let’s recall how various properties of quadratic rings are related:

division property =)
Euclidean algorithm =)
prime divisor property ()
unique factorization

So we while we suggested that Z[
p�d] does not have the division property for d � 3, that

doesn’t mean we need that or the Euclidean algorithm to have prime factorization, but only
that it’s a useful tool for proving unique factorization when d = 1, 2.

Let’s think about the next example, d = 3. We saw in Exercise 2.4.2 that Z[
p�3] does

not have the division property, and we also saw in Exercise 2.2.2 that Z[
p�3] does not have

unique factorization, namely

4 = 2 · 2 = (1 +

p�3)(1�p�3)
are two distinct factorizations of 4 into irreducibles of Z[

p�3]. However, in some sense,
the problem with this example is simply that Z[

p�3] does not have enough elements, and
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this can be resolved by passing to the Eisenstein integers Z[⇣3] = Z[1+
p
�3

2 ], which contains
Z[
p�3]. Namely, in Z[⇣3] we can factor

2 =

1 +

p�3
2

· (1�p�3),

so the above factorizations of 4 in Z[
p�3] resolve into the factorizations

4 = (

1 +

p�3
2

· (1�p�3))2 =
✓

1 +

p�3
2

· (1�p�3)1 +
p�3
2

◆

(1�p�3).

Indeed one has unique factorization in Z[⇣3], and one can prove it in a similar manner
to above. The key step is the division property:

Exercise 2.5.3. Show Z[⇣3] has the division property. (Suggestion: First think about the
rectangles we constructed for Z[

p�3] in the proof of Theorem 2.4.5. Then think about
what multiples you get inside these rectangles if you can multiply by 1+

p
�3

2 .)

Theorem 2.5.4. The Eisenstein integers Z[⇣3] have unique factorization.

Proof. Once one has the division property, one gets a Euclidean algorithm, and the proof is
the same as that for Z[i] and Z[

p�2].
Unique factorization for Z[⇣3] is useful for proving Fermat’s Last Theorem for n = 3, i.e.,

x3 + y3 = z3 has no nontrivial solutions (i.e., no solutions with x, y, z all nonzero). We’ll
discuss this in Chapter 6.

Exercise 2.5.4. Even though Z[⇣3] has unique factorization, show that there exist a, b 2
Z[⇣3] which are relatively prime with ab a cube but neither a nor b are cubes. What is the
difference between this situation and Exercise 2.5.2?

Now that we’ve seen Z[⇣3] can resolve failure of unique factorization in Z[
p�3], you

might wonder if you can do this for other rings, e.g., Z[
p�5] or Z[

p�7]? It turns out you
can in one but not the other. For Z[

p�3] this worked because we could adjoin “quadratic
integer” 1+

p
�3

2 , and then the geometry works out nice in Exercise 2.5.3.
Regarding the quadratic integer terminology, what it means in general for a complex

number z to be an algebraic integer is that it is a root of some monic polynomial zn +

c
n�1z

n�1
+ · · · c1z+ c0 for some c

i

2 Z. E.g., since ⇣j
n

satisfies zn� 1 = 0, each root of unity
⇣j
n

is an algebraic integer. So are sums, differences and products of algebraic integers (the
set of all algebraic integers forms a ring). In particular ⇣3 = �1+

p
�3

2 is an algebraic integer,
and so is 1 + ⇣3 =

1+
p
�3

2 .
We say d 2 Z is squarefree if m 2 N with m2|d implies m = 1, i.e., d is not nontrivially

divisible by any squares. Note that if d 2 Z with d = d0m
2 where d0 is squarefree and

m 2 N, then
p
d = m

p
d0 so

Z[
p
d] =

n

a+ bm
p

d0 : a, b 2 Z
o

= Z[m
p

d0]

Q(

p
d) =

n

a+ bm
p

d0 : a, b 2 Q
o

= Q(

p

d0).
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So when we want to work with quadratic rings which are as big as possible (and thus
increasing the likelihood of unique factorization, admittedly for reasons I haven’t completely
explained), we may as well restrict to d squarefree. Moreover, one gets all quadratic fields
Q(

p
d) by restricting to squarefree d.

Definition 2.5.5. Let d 2 Z be squarefree, d 6= 0, 1. The ring of integers of Q(

p
d) is

O
d

=

(

Z[1+
p
d

2 ] =

n

a+ b · 1+
p
d

2 : a, b 2 Z
o

if d ⌘ 1 mod 4,

Z[
p
d] else.

Exercise 2.5.5. Show each O
d

is a ring.

There is a general result that says that (for d any nonsquare) Z[
p
d] can only have a

Euclidean algorithm or unique factorization if Z[
p
d] is a full ring of integers O

d

. Necessarily,
d is both squarefree and d 6⌘ 1 mod 4.

We now give a brief summary of what is known. Gauss, in his Disquistiones Arithmeticae
from 1801 (when he was only 23), which was a major milestone in number theory, found
that imaginary quadratic rings of integers O

d

(d < 0) have unique factorization when

d = �1,�2,�3,�7,�11,�19,�43,�67,�163
and conjectured there are no others. On the other hand, Gauss also conjectured that there
are infinitely many real quadratic rings of integers O

d

(d > 0) with unique factorizations.
Gauss’s conjecture on imaginary quadratic rings was proved in the 1960’s by Heegner

(a high school teacher) and Stark, and independently by Baker. Gauss’s conjecture on real
quadratic rings is still one of the major open problems in number theory, despite that unique
factorization seems extremely common for real quadratic O

d

. (More precisely, Cohen and
Lenstra conjectured O

d

should have unique factorization for more than 75% of squarefree
d > 1.)

In any case, we see that having unique factorization is a rather special property for
rings we care about in number theory—e.g., it only happens for finitely many imaginary
quadratic rings. We also remark that it only happens finitely many cyclotomic rings Z[⇣

n

]

(the largest of which is with n = 90). Much of algebraic number theory was developed
as an attempt to understand unique factorization and how to work in number rings when
unique factorization fails. There are three main ways to “resolve” nonunique factorization:
(i) Gauss’s theory of binary quadratic forms for quadratic rings; (ii) Kummer’s theory of
ideal numbers (basically, work in a larger ring S than your given ring R, where unique
factorization still might not hold, but that any factorization of R into irreducibles of S
is essentially unique); (iii) Dedekind’s ideal theory (a generalization of Kummer’s ideal
numbers, where one work with certain sets instead of number). Of these (iii) is by far
the most common theory to use regarding factorization in number rings in modern number
theory. Now we’re not studying any of these in this class—(ii) and (iii) are more advanced
than what we will do in this course, whereas (i) goes in a different direction.

Going back to our musings on which imaginary quadratic rings have a Euclidean algo-
rithm or unique factorization, the proof of Gauss’s conjecture in the imaginary case tells
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us that Z[
p�d] (d > 0) only has unique factorization when d = 1, 2, the cases we proved.

To see this, note the other cases where O�d

has unique factorization with d > 0 fall in
the situtation �d ⌘ 1 mod 4, i.e., d ⌘ 3 mod 4, so Z[

p�d] 6= O�d

, and use the “general
result” mentioned above. Consequently, the only cases where Z[

p�d] can have a Euclidean
algorithm is when d = 1, 2, and we proved in these cases it does.

One does not see this by just looking at the rings Z[
p�d], but having a Euclidean

algorithm really is more special than just having unique factorization. For the imaginary
quadratic rings of integers O�d

, they only have Euclidean algorithms if d = �1,�2,�3,�7,
or �11. Thus the last 4 cases on Gauss’s imaginary quadratic list have unique factorization
but no Euclidean algorithm. Among real quadratic rings O

d

, we only have a Euclidean
algorithm (with respect to the norm4) when

d = 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73.

4There is a more general notion of a ring having a “Euclidean algorithm,” namely one can measure size
not just using the norm, but possibly using another function. It is conjectured that infinitely many real
quadratic rings Od have a Euclidean algorithm in this more general sense, but still there are Od which have
unique factorization but do not have a generalized Euclidean algorithm.
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