1. The perimeter of a triangle $A B C$ is divided into three equal parts by three points P, Q, R. Show that

$$
\operatorname{Area}(\triangle P Q R)>\frac{2}{9} \operatorname{Area}(\triangle A B C)
$$

and that the constant $2 / 9$ is the best possible.
2. Find all pairs of positive integers m, n such that $\phi(m) \mid n$ and $\phi(n) \mid m$, where ϕ denotes Euler's function.
3. Let S be the boundary of the unit square $[0,1] \times[0,1]$ in \mathbf{R}^{2}. Suppose f is a continuous real-valued function on S such that $f(x, 0)$ and $f(x, 1)$ are polynomial functions of x on $[0,1]$ and such that $f(0, y)$ and $f(1, y)$ are polynomial functions of y on $[0,1]$. Prove that f is the restriction to S of a polynomial function of x and y.
4. Suppose n points are independently chosen at random on the perimeter of a circle. What is the probability that all the points lie in some semicircle?
5. A population consisting of particles of various types evolves in time according to the following rule: Each particle is deemed to belong to a unique generation $n=1,2,3, \ldots$. Each particle produces a certain number of "offspring" particles, and, for each n, generation $n+1$ comprises the totality of offspring of the particles in generation n. A particle of type $i=0,1,2, \ldots$ produces exactly $i+2$ offspring, one each of types $0,1,2, \ldots, i+1$. Let $N(n, k)$ denote the number of particles in the nth generation when the first generation consists of a single particle of type k. Find a formula for $N(n, k)$.

