
HARMONIC ANALYSIS ON SO(3)

CHRISTIAN REMLING

These notes are meant to give a glimpse into non-commutative har-
monic analysis by looking at one example. I will follow Dym-McKean,
Fourier Series and Integrals, Sect. 4.8 – 4.13, very closely.

1. The group SO(3)

Since Fourier analysis on finite abelian groups worked so well, we now
get (much) more ambitious and discuss an infinite non-abelian group.
Our example is the group of proper rotations on R3, now denoted by
SO(3) (“special orthogonal group” – “special” just means that the
determinant is equal to 1). So

SO(3) = {g ∈ R3×3 : gtg = 1, det g = 1}.

Such a rotation g can be described by three parameters. For instance,
if you know the axis of rotation (specified by a direction or a point
on S2 or two angles) and the angle of rotation (one parameter), g is
determined uniquely. Alternatively, a matrix g ∈ R3×3 has 9 entries,
but the requirement that gtg = 1 gives 6 conditions on these entries,
and again 9− 6 = 3. (The condition that det g = 1 singles out one half
of the matrices satisfying gtg = 1; it does not reduce the dimension.)
Summarizing in fancy language and adding some precision, we have:

Theorem 1.1. SO(3) is a (compact) 3-dimensional manifold (what-
ever that means).

We can’t use characters to analyze functions on G = SO(3). This
does not come as a surprise because G is not commutative and a char-
acter χ can’t distinguish between gh and hg:

χ(gh) = χ(g)χ(h) = χ(hg)

More to the point, it can be shown that the only character χ on SO(3)
is the trivial character χ(g) ≡ 1.

To analyze functions on G, we break G into smaller pieces. Let K be
the subgroup of rotations about the z axis. Equivalently, K is the set of
rotations that fix the north pole n = (0, 0, 1)t. An explicit description
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of K is given by

K = {k(ϕ) : 0 ≤ ϕ < 2π}, k(ϕ) =

cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 .

K is a subgroup of G, and in fact K ∼= S1. Indeed, the map k(ϕ) 7→ eiϕ

is an isomorphism from K onto S1.

Exercise 1.1. Check this.

We now introduce the cosets of K

gK = {gk : k ∈ K}
and the set of cosets

G/K = {gK : g ∈ G}.
(Warning for readers with some knowledge of group theory: K is not
a normal subgroup and G/K is not a group.)

Exercise 1.2. Prove that two cosets g1K, g2K are either equal or dis-
joint.

Given h ∈ G and a coset gK, the group element h acts on the
coset gK in a natural way and produces the new coset hgK. The next
theorem shows that the coset space G/K can be naturally identified
with S2. Moreover, if looked at on S2, the above action becomes the
map x 7→ hx (x ∈ S2, h ∈ SO(3)).

Theorem 1.2. There exists a bijective map j : G/K → S2 so that
j(hgK) = hj(gK) for all g, h ∈ G.

Proof. Let n = (0, 0, 1)t be the north pole. We would like to define
j(gK) = gn but before we can do this, we must check that the right-
hand side is independent of the choice of the representative g. In other
words, if g1K = g2K, then we must also have that g1n = g2n. Now if
g1K = g2K, then g2 = g1k for some k ∈ K and since k fixes the north
pole, g2n = g1kn = g1n, as desired.

It is clear that j satisfies j(hgK) = hj(gK). Moreover, j maps G/K
onto S2 because for every x ∈ S2, there exists a rotation g so that
gn = x. It remains to show that j is injective. If g1n = g2n, then the
rotation g−1

2 g1 fixes n and thus must be in K. But then g1K = g2K,
so g1, g2 actually represent the same coset. �

We have already seen that we can let group elements act on cosets
gK. We will now be especially interested in the double coset space

K/G/K = {KgK : g ∈ G},
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where, as expected,

KgK = {k1gk2 : k1, k2 ∈ G}.

Things become very transparent if we use the identification G/K ∼= S2

from above. Then gK corresponds to a point x on S2, and k ∈ K
acts on this by just doing the rotation kx. Now K is precisely the set
of rotations about the z axis, so KgK ∼= Kx is a circle of constant
latitude on the sphere. In particular, we can parametrize the elements
of K/G/K by using this latitude θ. In other words, θ is the angle a
vector pointing towards the circle makes with the z axis, and 0 ≤ θ ≤ π.

2. Integration on G

We can’t make any serious progress without being able to integrate
functions defined on G. There is heavy machinery that addresses this
issue in a very general setting, but we don’t need any of this here.
We just recall from the previous section that we can naturally identify
G ∼= G/K ×K and also G/K ∼= S2, K ∼= S1, and we do know how to
integrate on S1 and S2, respectively. This then automatically gives us
an integral on G.

To carry out this program, associate with a (sufficiently nice) func-
tion f : G→ C its average f0 over gK:

f0(g) =

∫
K

f(gk) dk

More precisely, we actually do the integral

1

2π

∫ 2π

0

f(gk(ϕ)) dϕ,

making use of the existing integration theory on S1 ∼= [0, 2π). However,
at least for theoretical use of the integral, it’s usually better to be less
explicit in the notation.

The point is that f0 only depends on the coset gK of g, not on g
itself. In a sense, this is clear because f0 was defined as the average over
that coset. The formal proof depends on the (left and right) invariance
of the integral on K: For every continuous (say) function f : K → C
and k′ ∈ K,

(2.1)

∫
K

f(k) dk =

∫
K

f(k′k) dk =

∫
K

f(kk′) dk.

Exercise 2.1. Prove (2.1). (The proof consists of unwrapping the defi-
nitions.)
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Now (2.1) indeed shows that for arbitrary k′ ∈ K,

f0(gk
′) =

∫
K

f(gk′k) dk =

∫
K

f(gk) dk = f0(g).

This says that f0 is constant on every coset gK. In particular, making
use of the identification G/K ∼= S2, we can define

(2.2)

∫
G

f(g) dg =
1

4π

∫
S2

dσ(x)f0(x).

Again, this is actually short-hand for the more precise formula∫
G

f(g) dg =
1

4π

∫
S2

dσ(x)f0(j
−1(x)),

where j−1 is the inverse of the identification map j : G/K → S2 from
Theorem 1.2. Even this is not totally accurate, we would actually need

the function f̃0 : G/K → C induced by f0 : G→ C in the integral. Of
course, (2.2) is the version we’ll work with.

The factor 1/4π makes sure that the integral is normalized in the
sense that

∫
G
dg = 1. It is also left-invariant, that is,

(2.3)

∫
G

f(hg) dg =

∫
G

f(g) dg.

In fact, dg is the only measure on SO(3) with these properties. It is
called the Haar measure.

Exercise 2.2. Prove (2.3). Again, you will need to unwrap the defini-
tions.

The Haar measure on SO(3) has additional nice properties:

Theorem 2.1. Let f : G→ C a continuous (say) function and h ∈ G.
Then ∫

G

f(g) dg =

∫
G

f(g−1) dg =

∫
G

f(gh) dg =

∫
G

f(hg) dg.

Proof. Given f , define a new function f−1 by f−1(g) = f(g−1). Left-
invariance of dg (see (2.3)) then shows that∫

G

f(g) dg =

∫
G

f(h−1g) dg =

∫
G

dh

∫
G

dg f(h−1g)

=

∫
G

dg

∫
G

dh f−1(g−1h) =

∫
G

dg

∫
G

dh f−1(h)

=

∫
G

f−1(h) dh =

∫
G

f(g−1) dg.
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Given this and left-invariance, the right-invariance now follows from
the calculation∫

G

f(gh) dg =

∫
G

f−1(h−1g−1) dg =

∫
G

f−1(h−1g) dg

=

∫
G

f−1(g) dg =

∫
G

f(g−1) dg =

∫
G

f(g) dg.

�

3. Convolutions

Recall that if X = S1 or X = Rd, then the Fourier transform is
a linear map on the functions on X. Moreover, it also respects the

convolution product of functions: (f ∗ g)̂= f̂ ĝ . We will now look for
similar maps on functions on G = SO(3).

To do this, we must first define a convolution for functions f : G→
C. The obvious try is

(f1 ∗ f2)(g) =

∫
G

f1(gh
−1)f2(h) dh

(as usual, if in doubt, assume that f1, f2 are nice smooth functions;
from a structural point of view, however, it would actually be best to
work with the class L1(G) of merely integrable functions here).

Exercise 3.1. Prove that convolution is associative.

Unfortunately, convolution is not commutative on SO(3). We can
restrict attention to functions on G/K or, equivalently, functions on G
that are constant on cosets. Convolution preserves this property, as is
seen from the calculation

(f1 ∗ f2)(gk) =

∫
G

f1(gkh
−1)f2(h) dh =

∫
G

f1(gh
−1)f2(hk) dh

=

∫
G

f1(gh
−1)f2(h) dh = (f1 ∗ f2)(g).

Here, the second equality follows from the substitution h→ hk (right-
invariance!), and in the third equality, we have used the fact that f2 is
constant on the coset hK.

We can go one step further and consider functions on K/G/K, or,
equivalently, functions on G that are constant on double cosets KgK.

Exercise 3.2. Show that convolution preserves this property, too.

Exercise 3.3. Prove that g and g−1 have the same double coset: KgK =
Kg−1K. In particular, f(g) = f(g−1) for any function f that is con-
stant on double cosets.
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Hint: Use the representation of double cosets as circles of constant
latitude on the sphere S2 and observe that cos θ = n · gn.

Theorem 3.1. If f1, f2 are functions on K/G/K, then f1∗f2 = f2∗f1.

Proof. By Exercise 3.3 and Theorem 2.1,

(f1 ∗ f2)(g) =

∫
G

f1(gh
−1)f2(h) dh =

∫
G

f1(hg
−1)f2(h) dh

=

∫
G

f1(h)f2(hg) dh =

∫
G

f2(g
−1h−1)f1(h) dh

= (f2 ∗ f1)(g
−1) = (f2 ∗ f1)(g).

�

4. Algebra homomorphisms on L1(K/G/K)

Encouraged by Theorem 3.1, we now look for algebra homomor-
phisms ψ : L1(K/G/K) → C. This is to say, we look for maps
ψ acting on (integrable) functions on double cosets that are linear
(ψ(af1+bf2) = aψ(f1)+bψ(f2)) and also satisfy ψ(f1∗f2) = ψ(f1)ψ(f2).

Theorem 4.1. The algebra homomorphisms are precisely given by

(4.1) ψ(f) =

∫
G

f(g)p(g) dg,

where C∞(K/G/K), |p(g)| ≤ p(1) = 1, and

(4.2) p(g)p(h) =

∫
K

p(gkh) dk.

We call a function p with these properties a spherical function. Note
that since K/G/K ∼= [0, π], we can think of f and p as being functions
of θ ∈ [0, π] or, equivalently, as depending on cos θ only. If we take
this point of view and integrate out the other variables, the above
representation of ψ becomes

ψ(f) =
1

2

∫ π

0

f(cos θ)p(cos θ) sin θ dθ.

Sketch of proof. The formal manipulation

ψ(f1)ψ(f2) = ψ(f1 ∗ f2) = ψ

(∫
G

f1(gh
−1)f2(h) dh

)
=

∫
G

ψ(f1(gh
−1))f2(h) dh

makes it plausible that ψ(f) has the integral representation given in the
theorem (pick f1 with ψ(f1) = 1). It also seems reasonable to assume
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that then p will be constant on double cosets and smooth. (These
arguments can be made rigorous, of course.)

We will now show that then (4.2) must hold for such a p. We have
that∫

G

dg

∫
G

dh f1(g)f2(h)p(g)p(h) = ψ(f1)ψ(f2) = ψ(f1 ∗ f2)

=

∫
G

dg p(g)

∫
G

dh f1(gh
−1)f2(h)

=

∫
G

dg

∫
G

dh f1(g)f2(h)p(gh).

This does not imply that p(g)p(h) = p(gh) because f1, f2 are not
arbitrary functions on G: they are constant on double cosets. So, as in
the remarks preceding the proof, we should first integrate out the other
variables. This cannot be done directly because p(gh) need not be a
function of the double cosets of g and h only. But the final integral is
unchanged if we replace p(gh) by p(gkh) with k ∈ K (why?), and thus
we can in fact replace p(gh) by the average

∫
K
p(gkh) dk. This average

is constant on KgK as well as on KhK (why?), so the argument
outlined above now works and shows that (4.2) holds.

The condition that |p(g)| ≤ 1 can be deduced from (4.2). We will
also omit the proof of the converse, namely the assertion that every
spherical function induces a homorphism by (4.1). �

5. Spherical functions

We now want to analyze the spherical functions p in more detail.
Most properties will follow from the fact that the spherical functions
are eigenfunctions of the Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

Exercise 5.1. Show that if a function f is expressed in spherical coor-
dinates r, θ, ϕ, then

∆f =
∂2f

∂r2
+

2

r

∂f

∂r
+

1

r2
∆Sf,

where

∆S =
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

is the spherical Laplacian.
Warning: This is a rather tedious calculation, based on the chain

rule.
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The Laplace operator commutes with rotations. More precisely, for
a (smooth, decaying) function f on R3 and g ∈ SO(3), let (Lgf)(x) =
f(gx).

Exercise 5.2. Prove that Lg∆f = ∆Lgf .
Hint: Prove that both sides have the same Fourier transform. Recall

that (Lgf)̂= Lgf̂ .

Since rotations g ∈ SO(3) act on the sphere S2, it also makes sense to
apply Lg to functions f : S2 → C. The definition still reads (Lgf)(x) =
f(gx) (x ∈ S2).

Exercise 5.3. Deduce from the result of Exercises 5.1, 5.2 that Lg∆Sf =
∆SLgf for all f ∈ C∞(S2).

Theorem 5.1. Let p be a spherical function, interpreted as a function
on S2 by using the identification G/K ∼= S2 from Theorem 1.2. Then
p is an eigenfunction of the spherical Laplacian: ∆Sp = λp.

Proof. In the identity (4.2), identify h ∈ G with x = hn ∈ S2 (it’s safe
to do so because spherical functions are constant on double cosets).
Apply ∆S to both sides to obtain

p(g)∆Sp(x) =

∫
K

∆SLgkp(x) dk =

∫
K

Lgk∆Sp(x) dk,

or, going back to the original notation,

p(g)(∆Sp)(h) =

∫
K

(∆Sp)(gkh) dk.

Now p and ∆Sp are constant on double cosets and KgK = Kg−1K
(see Exercise 3.3), so

p(g)(∆Sp)(h) = p(g−1)(∆Sp)(h
−1) =

∫
K

(∆Sp)(g
−1kh−1) dh

=

∫
K

(∆Sp)(hk
−1g) dk =

∫
K

(∆Sp)(hkg) dk

= p(h)(∆Sp)(g).

In particular, letting h = 1, we see that ∆Sp = λp, with λ = (∆Sp)(1).
�

Exercise 5.4. Show that the spherical Laplacian is symmetric in the
sense that (∆Sf, g) = (f,∆Sg), where f, g ∈ C∞(S2) and (f, g) =

1/(4π)
∫

S2 f(x)g(x) dσ(x).
Hint: Prove a similar result for ∆ and deduce the claim from this.



HARMONIC ANALYSIS ON SO(3) 9

Exercise 5.5. Show that eigenfunctions of ∆S belonging to different
eigenvalues λ are orthogonal with respect to the scalar product intro-
duced in the previous exercise.

Hint: Use the result of Exercise 5.4.

To actually determine those eigenfunctions of the spherical Laplacian
that are constant on circles of latitude, we introduce the generating
function

F (x, z) = (1− 2xz + z2)−1/2,

and expand into a power series in z:

F (x, z) =
∞∑

n=0

pn(x)zn.

Exercise 5.6. Prove that for |x| ≤ 1, F is a holomorphic function of z
in {z ∈ C : |z| < 1}.

We can get this power series by using the binomial series

(1 + y)−1/2 =
∞∑

n=0

(
−1/2

n

)
yn.

In particular, this shows that pn is a polynomial of degree n, the nth
Legendre polynomial. We will be interested in the functions pn(cos θ).

Theorem 5.2. ∆Spn(cos θ) = −n(n+ 1)pn(cos θ) and

1

2

∫ π

0

p2
n(cos θ) sin θ dθ =

1

2n+ 1

In other words, the pn are eigenfunctions of the spherical Laplacian,
and they are constant on circles of latitude. By Exercise 5.5, they are
also orthogonal. Indeed, with more work, one can show:

Theorem 5.3. The Legendre polynomials pn(cos θ) (n ≥ 0) are pre-
cisely the spherical functions. Moreover, {pn(cos θ) : n ≥ 0} is an
orthogonal basis of L2([0, π], 1

2
sin θ dθ).

We will be satisfied with just proving Theorem 5.2.

Proof of Theorem 5.2. Note that for 0 ≤ r < 1, F (cos θ, r) is the recip-
rocal of the distance |x− n| between x = r(sin θ cosϕ, sin θ sinϕ, cos θ)
and the north pole n.

Exercise 5.7. Show that ∆|x− x0|−1 = 0 for x 6= x0.
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By Exercises 5.7 and 5.1

0 = ∆F (cos θ, r) =

(
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
∆S

)
F (cos θ, r)

=
∞∑

n=0

(
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
∆S

)
pn(cos θ)rn

=
∞∑

n=0

(n(n+ 1)pn(cos θ) + ∆Spn(cos θ)) rn−2.

This implies the first formula from Theorem 5.2.
The functions pn(cos θ), being eigenfunctions of ∆S, are thus orthog-

onal by Exercise 5.5. In particular, for real z ∈ (−1, 1),

1

2

∫ π

0

|F (cos θ, z)|2 sin θ dθ =
∞∑

n=0

‖pn‖2z2n.

The integral on the left-hand side can be evaluated explicitly:

1

2

∫ π

0

sin θ

1− 2z cos θ + z2
dθ =

1

2

∫ 1

−1

dx

1− 2zx+ z2

=
−1

4z
ln(1− 2zx+ z2)

∣∣∣1
−1

=
−1

4z
ln

1− 2z + z2

1 + 2z + z2

=
1

2z
ln

1 + z

1− z
=

∞∑
n=0

z2n

2n+ 1

In the last step, we use the power series expansion

ln(1 + y) =
∞∑

n=1

(−1)n+1

n
yn.

�

Let us summarize what we have accomplished so far: There are ho-
momorphisms mapping functions on G/K/G to C; they correspond to
the spherical function pn(cos θ), or, equivalently, to the eigenfunctions
of the spherical Laplacian that depend on latitude only. In fact, such
homomorphisms exist in sufficiently large supply and we can expand
every (integrable, say) function on G/K/G into a generalized Fourier

series: f =
∑∞

n=0 f̂(n)pn, where

f̂(n)

2n+ 1
=

∫
S2

fpn dσ =
1

2

∫ π

0

f(cos θ)pn(cos θ) sin θ dθ =

∫
G

fpn dg.
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6. Spherical harmonics

We will now extend the theory to functions on G/K ∼= S2. We then
need additional functions on the sphere, not necessarily constant on
circles of latitude. We obtain these new functions by letting G act on
the pn. More precisely, define pg

n(x) = pn(gx) (g ∈ G, x ∈ S2) and
let Mn be the space spanned by {pg

n : g ∈ G}. (More precisely, Mn

is the closed subspace of L2(S
2) spanned by the pg

n. We will not be
very precise about this in the sequel and also leave convergence issues
aside. As it happens, the Mn turn out to be finite dimensional so that
actually there are no such problems anyway.)

The spherical harmonics (of weight n) are, by definition, the func-
tions from Mn. Let Ynl, l = 0,±1, . . . be an ONB of Mn.

Note that we are, as usual, not very concerned about properly distin-
guishing between group elements, points on the sphere, and latitude.
For instance, to actually evaluate pn(gx), we would have to apply g ∈ G
to x ∈ S2 and determine the latitude θ of the resulting point gx ∈ S2

to obtain pn(gx) as pn(cos θ), this being one of the functions from the
previous section. To make things worse, we might also write pn(gh) in-
stead; in this case, we first identify h ∈ G with the point x = hn ∈ S2

and then proceed as above.
Since ∆S commutes with the action Lg of G on functions on the

sphere (compare Exercise 5.3), the Ynl are still eigenfunctions of ∆S

with eigenvalue −n(n+ 1). Now expand pg
n, using the basis {Ynl}:

(6.1) pg
n(x) =

∑
l

cgn(l)Ynl(x),

with unknown coefficients cgn(l) ∈ C. We can determine the cgn(l) by
looking at the scalar product (pg

n, p
g′
n ). Using the fact that the pn’s

are constant on double cosets and invariance of the Haar measure, we
obtain that

∫
G

pg
n(h)pg′

n (h) dh =

∫
G

pn(gh)pn(g′h) dh =

∫
G

pn(k−1gh)pn(g′h) dh

=

∫
G

pn(h)pn(g′g−1kh) dh.
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This can now be integrated over K; we also use formula (4.2):∫
G

pg
n(h)pg′

n (h) dh =

∫
G

dh pn(h)

∫
K

dk pn(g′g−1kh)

=

∫
G

dh pn(h)pn(g′g−1)pn(h)

= pn(g′g−1)‖pn‖2 =
pg′

n (g−1)

2n+ 1

By taking linear combinations of this formula, we in fact see that∫
G

pg
n(h)f(h) dh =

f(g−1)

2n+ 1

for all f ∈Mn. In particular, choosing f = Ynl, we obtain that cgn(l) =

Ynl(g−1)/(2n + 1). We plug this back into (6.1), replace x by h and g
by g−1, and summarize:

Theorem 6.1. The spherical harmonics satisfy the addition formula:

1

2n+ 1

∑
l

Ynl(g)Ynl(h) = pn(g−1h)

As a consequence, we obtain:

Corollary 6.1. dimMn = 2n+ 1

Proof. With g = h, the addition formula says that (2n+1)−1
∑
|Ynl(g)|2 =

pn(1) = 1, and since ‖Ynl‖ = 1, integration over G now shows that there
must be exactly 2n+ 1 summands. �

We label so that l varies over −n, . . . , n. Again, there is a complete-
ness result (compare Theorem 5.3): The Ynl (n ≥ 0, −n ≤ l ≤ n) form
an ONB of L2(S

2). So every function f ∈ L2(S
2) can be expanded as

f(x) =
∞∑

n=0

n∑
l=−n

cnlYnl(x),

with cnl = (f, Ynl). Moreover, Mn is precisely the space of eigenfunc-
tions of ∆S with eigenvalue −n(n+ 1).

7. Representations of SO(3)

As the final step, it remains to extend the theory from functions
on S2 ∼= G/K to functions on G. Motivated by the treatment of
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the preceding section, we let G act on the spherical harmonics and
introduce coefficients U ij

n (g) by writing

(7.1) Yni(gx) =
n∑

j=−n

U ij
n (g)Ynj(x).

Such a representation of Yni(gx) is possible because this function is in
the eigenspace of ∆S belonging to the eigenvector −n(n+ 1) (Exercise
5.5 again!) and the Ynj (−n ≤ j ≤ n) span this space. Write Un(g) for
the (2n+ 1)× (2n+ 1) matrix with entries U ij

n (g).

Theorem 7.1. Un(g) is unitary (U∗
nUn = 1) and Un(g)Un(h) = Un(gh)

for all g, h ∈ G.

In other words, the map g 7→ Un(g) is a homomorphism from G to
U(2n+ 1), the group of unitary matrices on C2n+1. Such a homomor-
phism from a group to a matrix group is called a representation of G.
So, using this term, we have discovered representations of SO(3). More
importantly, these representations are the building blocks for the har-
monic analysis of functions on G; they take the role of the characters
in the abelian case.

Proof of Theorem 7.1. To check that Un(g) is unitary, use (7.1) to eval-
uate

δij =
1

4π

∫
S2

Yni(x)Ynj(x) dσ(x) =
1

4π

∫
S2

Yni(gx)Ynj(gx) dσ(x).

This yields

δij =
n∑

k,l=−n

U ik
n (g)U jl

n (g)
1

4π

∫
S2

Ynk(x)Ynl(x) dσ(x)

=
n∑

k=−n

U ik
n (g)U jk

n (g) = (UnU
∗
n)ji ,

as claimed (recall that for matrices A, B, we have that AB = 1 if and
only if BA = 1).

To verify the homomorphism property, compute Yni(ghx) in two
ways:

Yni(ghx) =
n∑

j=−n

U ij
n (gh)Ynj(x) =

n∑
k=−n

U ik
n (g)Ynk(hx)

=
n∑

k=−n

U ik
n (g)

n∑
j=−n

Ukj
n (h)Ynj(x)
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Since the Ynj (|j| ≤ n) are linearly independent, it follows that

U ij
n (gh) =

n∑
k=−n

U ik
n (g)Ukj

n (h) = (Un(g)Un(h))ij ,

as required. �

We will conclude this section by describing (without proofs) the use
of these representations for the harmonic analysis of functions on G.
For f ∈ L2(G), define

f̂(n) =

∫
G

f(g)U∗
n(g) dg.

Note that f̂(n) is a (2n+ 1)× (2n+ 1) matrix. We then have that

f(g) =
∞∑

n=0

(2n+ 1)tr
(
f̂(n)Un(g)

)
(“Fourier inversion”) and∫

g

|f(g)|2 dg =
∞∑

n=0

(2n+ 1)tr
(
f̂(n)f̂(n)∗

)
(“Plancherel identity”). Here, trM denotes the trace of the matrix M ,
that is, trM =

∑
Mii.

Exercise 7.1. Prove that (f1 ∗ f2)̂(n) = f̂2(n)f̂1(n) (in this order!).


