HARMONIC ANALYSIS ON $S O(3)$

CHRISTIAN REMLING

These notes are meant to give a glimpse into non-commutative harmonic analysis by looking at one example. I will follow Dym-McKean, Fourier Series and Integrals, Sect. $4.8-4.13$, very closely.

1. The group $S O(3)$

Since Fourier analysis on finite abelian groups worked so well, we now get (much) more ambitious and discuss an infinite non-abelian group. Our example is the group of proper rotations on \mathbb{R}^{3}, now denoted by $S O(3)$ ("special orthogonal group" - "special" just means that the determinant is equal to 1). So

$$
S O(3)=\left\{g \in \mathbb{R}^{3 \times 3}: g^{t} g=1, \operatorname{det} g=1\right\} .
$$

Such a rotation g can be described by three parameters. For instance, if you know the axis of rotation (specified by a direction or a point on S^{2} or two angles) and the angle of rotation (one parameter), g is determined uniquely. Alternatively, a matrix $g \in \mathbb{R}^{3 \times 3}$ has 9 entries, but the requirement that $g^{t} g=1$ gives 6 conditions on these entries, and again $9-6=3$. (The condition that $\operatorname{det} g=1$ singles out one half of the matrices satisfying $g^{t} g=1$; it does not reduce the dimension.) Summarizing in fancy language and adding some precision, we have:

Theorem 1.1. $S O(3)$ is a (compact) 3-dimensional manifold (whatever that means).

We can't use characters to analyze functions on $G=S O(3)$. This does not come as a surprise because G is not commutative and a character χ can't distinguish between $g h$ and $h g$:

$$
\chi(g h)=\chi(g) \chi(h)=\chi(h g)
$$

More to the point, it can be shown that the only character χ on $S O(3)$ is the trivial character $\chi(g) \equiv 1$.

To analyze functions on G, we break G into smaller pieces. Let K be the subgroup of rotations about the z axis. Equivalently, K is the set of rotations that fix the north pole $n=(0,0,1)^{t}$. An explicit description
of K is given by

$$
K=\{k(\varphi): 0 \leq \varphi<2 \pi\}, \quad k(\varphi)=\left(\begin{array}{ccc}
\cos \varphi & -\sin \varphi & 0 \\
\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

K is a subgroup of G, and in fact $K \cong S^{1}$. Indeed, the map $k(\varphi) \mapsto e^{i \varphi}$ is an isomorphism from K onto S^{1}.

Exercise 1.1. Check this.
We now introduce the cosets of K

$$
g K=\{g k: k \in K\}
$$

and the set of cosets

$$
G / K=\{g K: g \in G\} .
$$

(Warning for readers with some knowledge of group theory: K is not a normal subgroup and G / K is not a group.)

Exercise 1.2. Prove that two cosets $g_{1} K, g_{2} K$ are either equal or disjoint.

Given $h \in G$ and a coset $g K$, the group element h acts on the coset $g K$ in a natural way and produces the new coset $h g K$. The next theorem shows that the coset space G / K can be naturally identified with S^{2}. Moreover, if looked at on S^{2}, the above action becomes the map $x \mapsto h x\left(x \in S^{2}, h \in S O(3)\right)$.

Theorem 1.2. There exists a bijective map $j: G / K \rightarrow S^{2}$ so that $j(h g K)=h j(g K)$ for all $g, h \in G$.
Proof. Let $n=(0,0,1)^{t}$ be the north pole. We would like to define $j(g K)=g n$ but before we can do this, we must check that the righthand side is independent of the choice of the representative g. In other words, if $g_{1} K=g_{2} K$, then we must also have that $g_{1} n=g_{2} n$. Now if $g_{1} K=g_{2} K$, then $g_{2}=g_{1} k$ for some $k \in K$ and since k fixes the north pole, $g_{2} n=g_{1} k n=g_{1} n$, as desired.

It is clear that j satisfies $j(h g K)=h j(g K)$. Moreover, j maps G / K onto S^{2} because for every $x \in S^{2}$, there exists a rotation g so that $g n=x$. It remains to show that j is injective. If $g_{1} n=g_{2} n$, then the rotation $g_{2}^{-1} g_{1}$ fixes n and thus must be in K. But then $g_{1} K=g_{2} K$, so g_{1}, g_{2} actually represent the same coset.

We have already seen that we can let group elements act on cosets $g K$. We will now be especially interested in the double coset space

$$
K / G / K=\{K g K: g \in G\},
$$

where, as expected,

$$
K g K=\left\{k_{1} g k_{2}: k_{1}, k_{2} \in G\right\} .
$$

Things become very transparent if we use the identification $G / K \cong S^{2}$ from above. Then $g K$ corresponds to a point x on S^{2}, and $k \in K$ acts on this by just doing the rotation $k x$. Now K is precisely the set of rotations about the z axis, so $K g K \cong K x$ is a circle of constant latitude on the sphere. In particular, we can parametrize the elements of $K / G / K$ by using this latitude θ. In other words, θ is the angle a vector pointing towards the circle makes with the z axis, and $0 \leq \theta \leq \pi$.

2. Integration on G

We can't make any serious progress without being able to integrate functions defined on G. There is heavy machinery that addresses this issue in a very general setting, but we don't need any of this here. We just recall from the previous section that we can naturally identify $G \cong G / K \times K$ and also $G / K \cong S^{2}, K \cong S^{1}$, and we do know how to integrate on S^{1} and S^{2}, respectively. This then automatically gives us an integral on G.

To carry out this program, associate with a (sufficiently nice) function $f: G \rightarrow \mathbb{C}$ its average f_{0} over $g K$:

$$
f_{0}(g)=\int_{K} f(g k) d k
$$

More precisely, we actually do the integral

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} f(g k(\varphi)) d \varphi
$$

making use of the existing integration theory on $S^{1} \cong[0,2 \pi)$. However, at least for theoretical use of the integral, it's usually better to be less explicit in the notation.

The point is that f_{0} only depends on the coset $g K$ of g, not on g itself. In a sense, this is clear because f_{0} was defined as the average over that coset. The formal proof depends on the (left and right) invariance of the integral on K : For every continuous (say) function $f: K \rightarrow \mathbb{C}$ and $k^{\prime} \in K$,

$$
\begin{equation*}
\int_{K} f(k) d k=\int_{K} f\left(k^{\prime} k\right) d k=\int_{K} f\left(k k^{\prime}\right) d k . \tag{2.1}
\end{equation*}
$$

Exercise 2.1. Prove (2.1). (The proof consists of unwrapping the definitions.)

Now (2.1) indeed shows that for arbitrary $k^{\prime} \in K$,

$$
f_{0}\left(g k^{\prime}\right)=\int_{K} f\left(g k^{\prime} k\right) d k=\int_{K} f(g k) d k=f_{0}(g) .
$$

This says that f_{0} is constant on every coset $g K$. In particular, making use of the identification $G / K \cong S^{2}$, we can define

$$
\begin{equation*}
\int_{G} f(g) d g=\frac{1}{4 \pi} \int_{S^{2}} d \sigma(x) f_{0}(x) . \tag{2.2}
\end{equation*}
$$

Again, this is actually short-hand for the more precise formula

$$
\int_{G} f(g) d g=\frac{1}{4 \pi} \int_{S^{2}} d \sigma(x) f_{0}\left(j^{-1}(x)\right),
$$

where j^{-1} is the inverse of the identification map $j: G / K \rightarrow S^{2}$ from Theorem 1.2. Even this is not totally accurate, we would actually need the function $\widetilde{f}_{0}: G / K \rightarrow C$ induced by $f_{0}: G \rightarrow \mathbb{C}$ in the integral. Of course, (2.2) is the version we'll work with.

The factor $1 / 4 \pi$ makes sure that the integral is normalized in the sense that $\int_{G} d g=1$. It is also left-invariant, that is,

$$
\begin{equation*}
\int_{G} f(h g) d g=\int_{G} f(g) d g . \tag{2.3}
\end{equation*}
$$

In fact, $d g$ is the only measure on $S O(3)$ with these properties. It is called the Haar measure.

Exercise 2.2. Prove (2.3). Again, you will need to unwrap the definitions.

The Haar measure on $S O(3)$ has additional nice properties:
Theorem 2.1. Let $f: G \rightarrow \mathbb{C}$ a continuous (say) function and $h \in G$. Then

$$
\int_{G} f(g) d g=\int_{G} f\left(g^{-1}\right) d g=\int_{G} f(g h) d g=\int_{G} f(h g) d g .
$$

Proof. Given f, define a new function f^{-1} by $f^{-1}(g)=f\left(g^{-1}\right)$. Leftinvariance of $d g$ (see (2.3)) then shows that

$$
\begin{aligned}
\int_{G} f(g) d g & =\int_{G} f\left(h^{-1} g\right) d g=\int_{G} d h \int_{G} d g f\left(h^{-1} g\right) \\
& =\int_{G} d g \int_{G} d h f^{-1}\left(g^{-1} h\right)=\int_{G} d g \int_{G} d h f^{-1}(h) \\
& =\int_{G} f^{-1}(h) d h=\int_{G} f\left(g^{-1}\right) d g .
\end{aligned}
$$

Given this and left-invariance, the right-invariance now follows from the calculation

$$
\begin{aligned}
\int_{G} f(g h) d g & =\int_{G} f^{-1}\left(h^{-1} g^{-1}\right) d g=\int_{G} f^{-1}\left(h^{-1} g\right) d g \\
& =\int_{G} f^{-1}(g) d g=\int_{G} f\left(g^{-1}\right) d g=\int_{G} f(g) d g
\end{aligned}
$$

3. Convolutions

Recall that if $X=S^{1}$ or $X=\mathbb{R}^{d}$, then the Fourier transform is a linear map on the functions on X. Moreover, it also respects the convolution product of functions: $(f * g)^{\wedge}=\widehat{f} \widehat{g}$. We will now look for similar maps on functions on $G=S O(3)$.

To do this, we must first define a convolution for functions $f: G \rightarrow$ \mathbb{C}. The obvious try is

$$
\left(f_{1} * f_{2}\right)(g)=\int_{G} f_{1}\left(g h^{-1}\right) f_{2}(h) d h
$$

(as usual, if in doubt, assume that f_{1}, f_{2} are nice smooth functions; from a structural point of view, however, it would actually be best to work with the class $L_{1}(G)$ of merely integrable functions here).
Exercise 3.1. Prove that convolution is associative.
Unfortunately, convolution is not commutative on $S O(3)$. We can restrict attention to functions on G / K or, equivalently, functions on G that are constant on cosets. Convolution preserves this property, as is seen from the calculation

$$
\begin{aligned}
\left(f_{1} * f_{2}\right)(g k) & =\int_{G} f_{1}\left(g k h^{-1}\right) f_{2}(h) d h=\int_{G} f_{1}\left(g h^{-1}\right) f_{2}(h k) d h \\
& =\int_{G} f_{1}\left(g h^{-1}\right) f_{2}(h) d h=\left(f_{1} * f_{2}\right)(g) .
\end{aligned}
$$

Here, the second equality follows from the substitution $h \rightarrow h k$ (rightinvariance!), and in the third equality, we have used the fact that f_{2} is constant on the coset $h K$.

We can go one step further and consider functions on $K / G / K$, or, equivalently, functions on G that are constant on double cosets $K g K$.
Exercise 3.2. Show that convolution preserves this property, too.
Exercise 3.3. Prove that g and g^{-1} have the same double coset: $K g K=$ $K g^{-1} K$. In particular, $f(g)=f\left(g^{-1}\right)$ for any function f that is constant on double cosets.

Hint: Use the representation of double cosets as circles of constant latitude on the sphere S^{2} and observe that $\cos \theta=n \cdot g n$.

Theorem 3.1. If f_{1}, f_{2} are functions on $K / G / K$, then $f_{1} * f_{2}=f_{2} * f_{1}$.
Proof. By Exercise 3.3 and Theorem 2.1,

$$
\begin{aligned}
\left(f_{1} * f_{2}\right)(g) & =\int_{G} f_{1}\left(g h^{-1}\right) f_{2}(h) d h=\int_{G} f_{1}\left(h g^{-1}\right) f_{2}(h) d h \\
& =\int_{G} f_{1}(h) f_{2}(h g) d h=\int_{G} f_{2}\left(g^{-1} h^{-1}\right) f_{1}(h) d h \\
& =\left(f_{2} * f_{1}\right)\left(g^{-1}\right)=\left(f_{2} * f_{1}\right)(g) .
\end{aligned}
$$

4. Algebra homomorphisms on $L_{1}(K / G / K)$

Encouraged by Theorem 3.1, we now look for algebra homomorphisms $\psi: L_{1}(K / G / K) \rightarrow \mathbb{C}$. This is to say, we look for maps ψ acting on (integrable) functions on double cosets that are linear $\left(\psi\left(a f_{1}+b f_{2}\right)=a \psi\left(f_{1}\right)+b \psi\left(f_{2}\right)\right)$ and also satisfy $\psi\left(f_{1} * f_{2}\right)=\psi\left(f_{1}\right) \psi\left(f_{2}\right)$.
Theorem 4.1. The algebra homomorphisms are precisely given by

$$
\begin{equation*}
\psi(f)=\int_{G} f(g) p(g) d g \tag{4.1}
\end{equation*}
$$

where $C^{\infty}(K / G / K),|p(g)| \leq p(1)=1$, and

$$
\begin{equation*}
p(g) p(h)=\int_{K} p(g k h) d k \tag{4.2}
\end{equation*}
$$

We call a function p with these properties a spherical function. Note that since $K / G / K \cong[0, \pi]$, we can think of f and p as being functions of $\theta \in[0, \pi]$ or, equivalently, as depending on $\cos \theta$ only. If we take this point of view and integrate out the other variables, the above representation of ψ becomes

$$
\psi(f)=\frac{1}{2} \int_{0}^{\pi} f(\cos \theta) p(\cos \theta) \sin \theta d \theta
$$

Sketch of proof. The formal manipulation

$$
\begin{aligned}
\psi\left(f_{1}\right) \psi\left(f_{2}\right) & =\psi\left(f_{1} * f_{2}\right)=\psi\left(\int_{G} f_{1}\left(g h^{-1}\right) f_{2}(h) d h\right) \\
& =\int_{G} \psi\left(f_{1}\left(g h^{-1}\right)\right) f_{2}(h) d h
\end{aligned}
$$

makes it plausible that $\psi(f)$ has the integral representation given in the theorem (pick f_{1} with $\psi\left(f_{1}\right)=1$). It also seems reasonable to assume
that then p will be constant on double cosets and smooth. (These arguments can be made rigorous, of course.)

We will now show that then (4.2) must hold for such a p. We have that

$$
\begin{aligned}
\int_{G} d g \int_{G} d h f_{1}(g) f_{2}(h) p(g) p(h) & =\psi\left(f_{1}\right) \psi\left(f_{2}\right)=\psi\left(f_{1} * f_{2}\right) \\
& =\int_{G} d g p(g) \int_{G} d h f_{1}\left(g h^{-1}\right) f_{2}(h) \\
& =\int_{G} d g \int_{G} d h f_{1}(g) f_{2}(h) p(g h)
\end{aligned}
$$

This does not imply that $p(g) p(h)=p(g h)$ because f_{1}, f_{2} are not arbitrary functions on G : they are constant on double cosets. So, as in the remarks preceding the proof, we should first integrate out the other variables. This cannot be done directly because $p(g h)$ need not be a function of the double cosets of g and h only. But the final integral is unchanged if we replace $p(g h)$ by $p(g k h)$ with $k \in K$ (why?), and thus we can in fact replace $p(g h)$ by the average $\int_{K} p(g k h) d k$. This average is constant on $K g K$ as well as on $K h K$ (why?), so the argument outlined above now works and shows that (4.2) holds.

The condition that $|p(g)| \leq 1$ can be deduced from (4.2). We will also omit the proof of the converse, namely the assertion that every spherical function induces a homorphism by (4.1).

5. Spherical functions

We now want to analyze the spherical functions p in more detail. Most properties will follow from the fact that the spherical functions are eigenfunctions of the Laplacian

$$
\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}
$$

Exercise 5.1. Show that if a function f is expressed in spherical coordinates r, θ, φ, then

$$
\Delta f=\frac{\partial^{2} f}{\partial r^{2}}+\frac{2}{r} \frac{\partial f}{\partial r}+\frac{1}{r^{2}} \Delta_{S} f
$$

where

$$
\Delta_{S}=\frac{\partial^{2}}{\partial \theta^{2}}+\cot \theta \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}
$$

is the spherical Laplacian.
Warning: This is a rather tedious calculation, based on the chain rule.

The Laplace operator commutes with rotations. More precisely, for a (smooth, decaying) function f on \mathbb{R}^{3} and $g \in S O(3)$, let $\left(L_{g} f\right)(x)=$ $f(g x)$.

Exercise 5.2. Prove that $L_{g} \Delta f=\Delta L_{g} f$.
Hint: Prove that both sides have the same Fourier transform. Recall that $\left(L_{g} f\right)^{\wedge}=L_{g} \widehat{f}$.

Since rotations $g \in S O(3)$ act on the sphere S^{2}, it also makes sense to apply L_{g} to functions $f: S^{2} \rightarrow \mathbb{C}$. The definition still reads $\left(L_{g} f\right)(x)=$ $f(g x)\left(x \in S^{2}\right)$.
Exercise 5.3. Deduce from the result of Exercises 5.1, 5.2 that $L_{g} \Delta_{S} f=$ $\Delta_{S} L_{g} f$ for all $f \in C^{\infty}\left(S^{2}\right)$.

Theorem 5.1. Let p be a spherical function, interpreted as a function on S^{2} by using the identification $G / K \cong S^{2}$ from Theorem 1.2. Then p is an eigenfunction of the spherical Laplacian: $\Delta_{S} p=\lambda p$.
Proof. In the identity (4.2), identify $h \in G$ with $x=h n \in S^{2}$ (it's safe to do so because spherical functions are constant on double cosets). Apply Δ_{S} to both sides to obtain

$$
p(g) \Delta_{S} p(x)=\int_{K} \Delta_{S} L_{g k} p(x) d k=\int_{K} L_{g k} \Delta_{S} p(x) d k
$$

or, going back to the original notation,

$$
p(g)\left(\Delta_{S} p\right)(h)=\int_{K}\left(\Delta_{S} p\right)(g k h) d k
$$

Now p and $\Delta_{S} p$ are constant on double cosets and $K g K=K g^{-1} K$ (see Exercise 3.3), so

$$
\begin{aligned}
p(g)\left(\Delta_{S} p\right)(h) & =p\left(g^{-1}\right)\left(\Delta_{S} p\right)\left(h^{-1}\right)=\int_{K}\left(\Delta_{S} p\right)\left(g^{-1} k h^{-1}\right) d h \\
& =\int_{K}\left(\Delta_{S} p\right)\left(h k^{-1} g\right) d k=\int_{K}\left(\Delta_{S} p\right)(h k g) d k \\
& =p(h)\left(\Delta_{S} p\right)(g) .
\end{aligned}
$$

In particular, letting $h=1$, we see that $\Delta_{S} p=\lambda p$, with $\lambda=\left(\Delta_{S} p\right)(1)$.

Exercise 5.4. Show that the spherical Laplacian is symmetric in the sense that $\left(\Delta_{S} f, g\right)=\left(f, \Delta_{S} g\right)$, where $f, g \in C^{\infty}\left(S^{2}\right)$ and $(f, g)=$ $1 /(4 \pi) \int_{S^{2}} f(x) \overline{g(x)} d \sigma(x)$.

Hint: Prove a similar result for Δ and deduce the claim from this.

Exercise 5.5. Show that eigenfunctions of Δ_{S} belonging to different eigenvalues λ are orthogonal with respect to the scalar product introduced in the previous exercise.

Hint: Use the result of Exercise 5.4.
To actually determine those eigenfunctions of the spherical Laplacian that are constant on circles of latitude, we introduce the generating function

$$
F(x, z)=\left(1-2 x z+z^{2}\right)^{-1 / 2}
$$

and expand into a power series in z :

$$
F(x, z)=\sum_{n=0}^{\infty} p_{n}(x) z^{n} .
$$

Exercise 5.6. Prove that for $|x| \leq 1, F$ is a holomorphic function of z in $\{z \in \mathbb{C}:|z|<1\}$.

We can get this power series by using the binomial series

$$
(1+y)^{-1 / 2}=\sum_{n=0}^{\infty}\binom{-1 / 2}{n} y^{n} .
$$

In particular, this shows that p_{n} is a polynomial of degree n, the nth Legendre polynomial. We will be interested in the functions $p_{n}(\cos \theta)$.

Theorem 5.2. $\Delta_{S} p_{n}(\cos \theta)=-n(n+1) p_{n}(\cos \theta)$ and

$$
\frac{1}{2} \int_{0}^{\pi} p_{n}^{2}(\cos \theta) \sin \theta d \theta=\frac{1}{2 n+1}
$$

In other words, the p_{n} are eigenfunctions of the spherical Laplacian, and they are constant on circles of latitude. By Exercise 5.5, they are also orthogonal. Indeed, with more work, one can show:

Theorem 5.3. The Legendre polynomials $p_{n}(\cos \theta)(n \geq 0)$ are precisely the spherical functions. Moreover, $\left\{p_{n}(\cos \theta): n \geq 0\right\}$ is an orthogonal basis of $L_{2}\left([0, \pi], \frac{1}{2} \sin \theta d \theta\right)$.

We will be satisfied with just proving Theorem 5.2
Proof of Theorem 5.2. Note that for $0 \leq r<1, F(\cos \theta, r)$ is the reciprocal of the distance $|x-n|$ between $x=r(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$ and the north pole n.

Exercise 5.7. Show that $\Delta\left|x-x_{0}\right|^{-1}=0$ for $x \neq x_{0}$.

By Exercises 5.7 and 5.1

$$
\begin{aligned}
0 & =\Delta F(\cos \theta, r)=\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \Delta_{S}\right) F(\cos \theta, r) \\
& =\sum_{n=0}^{\infty}\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \Delta_{S}\right) p_{n}(\cos \theta) r^{n} \\
& =\sum_{n=0}^{\infty}\left(n(n+1) p_{n}(\cos \theta)+\Delta_{S} p_{n}(\cos \theta)\right) r^{n-2} .
\end{aligned}
$$

This implies the first formula from Theorem 5.2.
The functions $p_{n}(\cos \theta)$, being eigenfunctions of Δ_{S}, are thus orthogonal by Exercise 5.5. In particular, for real $z \in(-1,1)$,

$$
\frac{1}{2} \int_{0}^{\pi}|F(\cos \theta, z)|^{2} \sin \theta d \theta=\sum_{n=0}^{\infty}\left\|p_{n}\right\|^{2} z^{2 n}
$$

The integral on the left-hand side can be evaluated explicitly:

$$
\begin{aligned}
\frac{1}{2} \int_{0}^{\pi} \frac{\sin \theta}{1-2 z \cos \theta+z^{2}} d \theta & =\frac{1}{2} \int_{-1}^{1} \frac{d x}{1-2 z x+z^{2}} \\
& =\left.\frac{-1}{4 z} \ln \left(1-2 z x+z^{2}\right)\right|_{-1} ^{1} \\
& =\frac{-1}{4 z} \ln \frac{1-2 z+z^{2}}{1+2 z+z^{2}} \\
& =\frac{1}{2 z} \ln \frac{1+z}{1-z}=\sum_{n=0}^{\infty} \frac{z^{2 n}}{2 n+1}
\end{aligned}
$$

In the last step, we use the power series expansion

$$
\ln (1+y)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} y^{n} .
$$

Let us summarize what we have accomplished so far: There are homomorphisms mapping functions on $G / K / G$ to \mathbb{C}; they correspond to the spherical function $p_{n}(\cos \theta)$, or, equivalently, to the eigenfunctions of the spherical Laplacian that depend on latitude only. In fact, such homomorphisms exist in sufficiently large supply and we can expand every (integrable, say) function on $G / K / G$ into a generalized Fourier series: $f=\sum_{n=0}^{\infty} \widehat{f}(n) p_{n}$, where

$$
\frac{\widehat{f}(n)}{2 n+1}=\int_{S^{2}} f p_{n} d \sigma=\frac{1}{2} \int_{0}^{\pi} f(\cos \theta) p_{n}(\cos \theta) \sin \theta d \theta=\int_{G} f p_{n} d g .
$$

6. SPHERICAL HARMONICS

We will now extend the theory to functions on $G / K \cong S^{2}$. We then need additional functions on the sphere, not necessarily constant on circles of latitude. We obtain these new functions by letting G act on the p_{n}. More precisely, define $p_{n}^{g}(x)=p_{n}(g x)\left(g \in G, x \in S^{2}\right)$ and let M_{n} be the space spanned by $\left\{p_{n}^{g}: g \in G\right\}$. (More precisely, M_{n} is the closed subspace of $L_{2}\left(S^{2}\right)$ spanned by the p_{n}^{g}. We will not be very precise about this in the sequel and also leave convergence issues aside. As it happens, the M_{n} turn out to be finite dimensional so that actually there are no such problems anyway.)

The spherical harmonics (of weight n) are, by definition, the functions from M_{n}. Let $Y_{n l}, l=0, \pm 1, \ldots$ be an ONB of M_{n}.

Note that we are, as usual, not very concerned about properly distinguishing between group elements, points on the sphere, and latitude. For instance, to actually evaluate $p_{n}(g x)$, we would have to apply $g \in G$ to $x \in S^{2}$ and determine the latitude θ of the resulting point $g x \in S^{2}$ to obtain $p_{n}(g x)$ as $p_{n}(\cos \theta)$, this being one of the functions from the previous section. To make things worse, we might also write $p_{n}(g h)$ instead; in this case, we first identify $h \in G$ with the point $x=h n \in S^{2}$ and then proceed as above.

Since Δ_{S} commutes with the action L_{g} of G on functions on the sphere (compare Exercise 5.3), the $Y_{n l}$ are still eigenfunctions of Δ_{S} with eigenvalue $-n(n+1)$. Now expand p_{n}^{g}, using the basis $\left\{Y_{n l}\right\}$:

$$
\begin{equation*}
p_{n}^{g}(x)=\sum_{l} c_{n}^{g}(l) Y_{n l}(x) \tag{6.1}
\end{equation*}
$$

with unknown coefficients $c_{n}^{g}(l) \in \mathbb{C}$. We can determine the $c_{n}^{g}(l)$ by looking at the scalar product $\left(p_{n}^{g}, p_{n}^{g^{\prime}}\right)$. Using the fact that the p_{n} 's are constant on double cosets and invariance of the Haar measure, we obtain that

$$
\begin{aligned}
\int_{G} p_{n}^{g}(h) p_{n}^{g^{\prime}}(h) d h & =\int_{G} p_{n}(g h) p_{n}\left(g^{\prime} h\right) d h=\int_{G} p_{n}\left(k^{-1} g h\right) p_{n}\left(g^{\prime} h\right) d h \\
& =\int_{G} p_{n}(h) p_{n}\left(g^{\prime} g^{-1} k h\right) d h .
\end{aligned}
$$

This can now be integrated over K; we also use formula (4.2):

$$
\begin{aligned}
\int_{G} p_{n}^{g}(h) p_{n}^{g^{\prime}}(h) d h & =\int_{G} d h p_{n}(h) \int_{K} d k p_{n}\left(g^{\prime} g^{-1} k h\right) \\
& =\int_{G} d h p_{n}(h) p_{n}\left(g^{\prime} g^{-1}\right) p_{n}(h) \\
& =p_{n}\left(g^{\prime} g^{-1}\right)\left\|p_{n}\right\|^{2}=\frac{p_{n}^{g^{\prime}}\left(g^{-1}\right)}{2 n+1}
\end{aligned}
$$

By taking linear combinations of this formula, we in fact see that

$$
\int_{G} p_{n}^{g}(h) f(h) d h=\frac{f\left(g^{-1}\right)}{2 n+1}
$$

for all $f \in M_{n}$. In particular, choosing $f=\overline{Y_{n l}}$, we obtain that $c_{n}^{g}(l)=$ $\overline{Y_{n l}\left(g^{-1}\right)} /(2 n+1)$. We plug this back into (6.1), replace x by h and g by g^{-1}, and summarize:

Theorem 6.1. The spherical harmonics satisfy the addition formula:

$$
\frac{1}{2 n+1} \sum_{l} \overline{Y_{n l}(g)} Y_{n l}(h)=p_{n}\left(g^{-1} h\right)
$$

As a consequence, we obtain:
Corollary 6.1. $\operatorname{dim} M_{n}=2 n+1$
Proof. With $g=h$, the addition formula says that $(2 n+1)^{-1} \sum\left|Y_{n l}(g)\right|^{2}=$ $p_{n}(1)=1$, and since $\left\|Y_{n l}\right\|=1$, integration over G now shows that there must be exactly $2 n+1$ summands.

We label so that l varies over $-n, \ldots, n$. Again, there is a completeness result (compare Theorem 5.3): The $Y_{n l}(n \geq 0,-n \leq l \leq n)$ form an ONB of $L_{2}\left(S^{2}\right)$. So every function $f \in L_{2}\left(S^{2}\right)$ can be expanded as

$$
f(x)=\sum_{n=0}^{\infty} \sum_{l=-n}^{n} c_{n l} Y_{n l}(x)
$$

with $c_{n l}=\left(f, Y_{n l}\right)$. Moreover, M_{n} is precisely the space of eigenfunctions of Δ_{S} with eigenvalue $-n(n+1)$.

7. Representations of $S O(3)$

As the final step, it remains to extend the theory from functions on $S^{2} \cong G / K$ to functions on G. Motivated by the treatment of
the preceding section, we let G act on the spherical harmonics and introduce coefficients $U_{n}^{i j}(g)$ by writing

$$
\begin{equation*}
Y_{n i}(g x)=\sum_{j=-n}^{n} U_{n}^{i j}(g) Y_{n j}(x) \tag{7.1}
\end{equation*}
$$

Such a representation of $Y_{n i}(g x)$ is possible because this function is in the eigenspace of Δ_{S} belonging to the eigenvector $-n(n+1)$ (Exercise 5.5 again!) and the $Y_{n j}(-n \leq j \leq n)$ span this space. Write $U_{n}(g)$ for the $(2 n+1) \times(2 n+1)$ matrix with entries $U_{n}^{i j}(g)$.

Theorem 7.1. $U_{n}(g)$ is unitary $\left(U_{n}^{*} U_{n}=1\right)$ and $U_{n}(g) U_{n}(h)=U_{n}(g h)$ for all $g, h \in G$.

In other words, the map $g \mapsto U_{n}(g)$ is a homomorphism from G to $U(2 n+1)$, the group of unitary matrices on $\mathbb{C}^{2 n+1}$. Such a homomorphism from a group to a matrix group is called a representation of G. So, using this term, we have discovered representations of $S O(3)$. More importantly, these representations are the building blocks for the harmonic analysis of functions on G; they take the role of the characters in the abelian case.

Proof of Theorem 7.1. To check that $U_{n}(g)$ is unitary, use (7.1) to evaluate

$$
\delta_{i j}=\frac{1}{4 \pi} \int_{S^{2}} \overline{Y_{n i}(x)} Y_{n j}(x) d \sigma(x)=\frac{1}{4 \pi} \int_{S^{2}} \overline{Y_{n i}(g x)} Y_{n j}(g x) d \sigma(x) .
$$

This yields

$$
\begin{aligned}
\delta_{i j} & =\sum_{k, l=-n}^{n} \overline{U_{n}^{i k}(g)} U_{n}^{j l}(g) \frac{1}{4 \pi} \int_{S^{2}} \overline{Y_{n k}(x)} Y_{n l}(x) d \sigma(x) \\
& =\sum_{k=-n}^{n} \overline{U_{n}^{i k}(g)} U_{n}^{j k}(g)=\left(U_{n} U_{n}^{*}\right)_{j i},
\end{aligned}
$$

as claimed (recall that for matrices A, B, we have that $A B=1$ if and only if $B A=1$).

To verify the homomorphism property, compute $Y_{n i}(g h x)$ in two ways:

$$
\begin{aligned}
Y_{n i}(g h x) & =\sum_{j=-n}^{n} U_{n}^{i j}(g h) Y_{n j}(x)=\sum_{k=-n}^{n} U_{n}^{i k}(g) Y_{n k}(h x) \\
& =\sum_{k=-n}^{n} U_{n}^{i k}(g) \sum_{j=-n}^{n} U_{n}^{k j}(h) Y_{n j}(x)
\end{aligned}
$$

Since the $Y_{n j}(|j| \leq n)$ are linearly independent, it follows that

$$
U_{n}^{i j}(g h)=\sum_{k=-n}^{n} U_{n}^{i k}(g) U_{n}^{k j}(h)=\left(U_{n}(g) U_{n}(h)\right)_{i j}
$$

as required.
We will conclude this section by describing (without proofs) the use of these representations for the harmonic analysis of functions on G. For $f \in L_{2}(G)$, define

$$
\widehat{f}(n)=\int_{G} f(g) U_{n}^{*}(g) d g
$$

Note that $\widehat{f}(n)$ is a $(2 n+1) \times(2 n+1)$ matrix. We then have that

$$
f(g)=\sum_{n=0}^{\infty}(2 n+1) \operatorname{tr}\left(\widehat{f}(n) U_{n}(g)\right)
$$

("Fourier inversion") and

$$
\int_{g}|f(g)|^{2} d g=\sum_{n=0}^{\infty}(2 n+1) \operatorname{tr}\left(\widehat{f}(n) \widehat{f}(n)^{*}\right)
$$

("Plancherel identity"). Here, $\operatorname{tr} M$ denotes the trace of the matrix M, that is, $\operatorname{tr} M=\sum M_{i i}$.
Exercise 7.1. Prove that $\left(f_{1} * f_{2}\right)^{\wedge}(n)=\widehat{f}_{2}(n) \widehat{f}_{1}(n)$ (in this order!).

