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SCHRÖDINGER OPERATORS: THE A FUNCTION

CHRISTIAN REMLING

Abstract. We link recently developed approaches to the inverse spectral
problem (due to Simon and myself, respectively). We obtain a description

of the set of Simon’s A functions in terms of a positivity condition. This
condition also characterizes the solubility of Simon’s fundamental equation.

1. Introduction

Consider a one-dimensional Schrödinger equation,

−y′′(x) + V (x)y(x) = zy(x).(1.1)

In inverse spectral theory, we study the problem of recovering the potential V
from spectral data. Much has been done on this; we refer the reader to [4, 5] for
expositions of classical work, especially the approach of Gelfand and Levitan and to
[6, 9] for rather different views of the subject. In this paper, we are concerned with
two recently developed methods: the approach of Simon [10] and the treatment
given by myself in [8]. More specifically, we will apply the method of [8] to solve
an open problem in Simon’s theory. This supplements the results of [10] and shows
that Simon’s basic equation is a smoothly working machine for reconstructing the
potential: not only can the equation be used for this purpose (this was shown in
[10]), but it also automatically dismisses improper spectral data.

We will now describe our results in more detail and, at the same time, give a
brief introduction to the results of [10]. The basic object in Simon’s approach is the
so-called A function. The original definition is based on a representation formula
for the Titchmarsh-Weyl m function of the Schrödinger operator on (0,∞) with
Dirichlet boundary condition (y(0) = 0) at the origin. Namely, it is shown in [10]
that there exists a unique real valued function A so that

m(k2) = ik −
∫ ∞

0

A(t)e2ikt dt.(1.2)

Some assumptions are necessary; for instance, (1.2) holds if the potential V is
compactly supported and Im k is sufficiently large. A is in L1(0, N) for all N > 0,
and A on (0, N) is a function of V on (0, N) only. The converse is also true: A on
(0, N) determines V on (0, N).

Our first result characterizes the set of A functions. Define

AN = {A ∈ L1(0, N) : 1 +KA > 0} .
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2 CHRISTIAN REMLING

Here, KA is the (self-adjoint, Hilbert-Schmidt) integral operator on L2(0, N) with
kernel

K(x, t) =
1
2

(φ(x− t)− φ(x+ t)) ,(1.3a)

φ(x) =
∫ |x|/2

0

A(t) dt.(1.3b)

So (KAf)(x) =
∫ N

0
K(x, t)f(t) dt, and in the definition of AN , we require that the

operator 1 +KA be positive definite.

Theorem 1.1. AN is the set of A functions on (0, N). In other words, given
A0 ∈ L1(0, N), there exists V ∈ L1(0, N) so that A0 is the A function of this V
precisely if A0 ∈ AN .

Note that because of the local character of the problem, we do not properly
distinguish between functions and their restrictions to (0, N). Also, A functions
and potentials are always real valued; we do not make this explicit in the notation.

It is not yet clear why A is an interesting object in inverse spectral theory.
This depends on two facts. First of all, if V is continuous, then V (0) = A(0) (for
general V , this still holds, but needs interpretation). Second, if A(·, x) denotes the
A function of the problem on [x,∞), then this one-parameter family of A functions
satisfies

∂A(t, x)
∂x

=
∂A(t, x)
∂t

+
∫ t

0

A(s, x)A(t− s, x) ds.(1.4)

Basically, this is a way of writing the Schrödinger equation (1.1); the point is that
the potential has disappeared, so that (1.4) can be solved without knowing V . In
general, (1.4) needs to be interpreted appropriately, but if V is smooth (V ∈ C1

will do), (1.4) holds pointwise. Eq. (1.4) provides us with a method of recovering
the potential from its A function. Let A0 be this A function. Then, if one can
solve (1.4) with the initial condition A(t, 0) = A0(t) on ∆N = {(x, t) : 0 ≤ x ≤
N, 0 ≤ t ≤ N − x}, then, by the first fact, V can be read off as V (x) = A(0, x).
(0 ≤ x ≤ N).

It turns out that the positivity condition 1 + KA > 0 also characterizes the
solubility of this boundary value problem. In other words, if A0 ∈ L1(0, N) is
given, (1.4) has a solution A(t, x) defined on ∆N and satisfying A(t, 0) = A0(t)
precisely if A0 ∈ AN . This is the main result of this paper. Keel and Simon have
independently established the necessity of the positivity condition (unpublished
work). They use essentially the same method of proof.

We will give the precise formulation of the result described in the preceding
paragraph later (in Theorem 4.2) because this requires an interpretation of (1.4)
for non-smooth A. Fortunately, there is a very natural and satisfactory way to do
this, based on a regularity result from [10].

We conclude this introduction with a more detailed overview of the contents of
this paper. In the following section, we review material from [8]. Unfortunately, in
[8], I chose Neumann boundary conditions whereas here we need Dirichlet boundary
conditions, so we cannot quote directly from [8]. On the other hand, the necessary
modifications are in most cases rather obvious and straightforward, so we will, as
a rule, not give the proofs. There are two exceptions: we will prove Theorem 2.3
because we need the material from this proof to establish the relations to the theory
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from [10] and to prove Theorem 1.1. This material is presented in Sect. 3. Also,
we will make some remarks on the proof of Theorem 2.4 in the appendix because
here the necessary changes in the treatment of [8] are not entirely routine. In Sect.
4, we formulate and prove the result on the solubility of (1.4). The discussion of
this result is continued in Sect. 5.

Acknowledgment: I thank Barry Simon for informing me of his work with
Keel and for useful correspondence on the subject.

2. Spectral representation and de Branges spaces

We start by giving a very short review on de Branges spaces and their use in the
spectral representation of Schrödinger operators. This material was presented in
detail in [8], but for Neumann boundary conditions (y′(0) = 0) instead of Dirichlet
boundary conditions (y(0) = 0).

A de Branges function is an entire function E satisfying the inequality |E(z)| >
|E(z)| for all z ∈ C+ = {z ∈ C : Im z > 0}. If a de Branges function E is given,
one can form the de Branges space B(E). It consists of the entire functions F
for which F/E, F#/E ∈ H2(C+). Here, F#(z) = F (z), and H2(C+) is the usual
Hardy space on the upper half plane. So, g ∈ H2(C+) precisely if g is a holomorphic
function on C+ and supy>0

∫∞
−∞ |g(x + iy)|2 dx < ∞. An alternate description of

B(E) is given by

B(E) =
{
F : F entire,

∫
R

|(F/E)(λ)|2 dλ <∞,

|(F/E)(z)|, |(F#/E)(z)| ≤ CF (Im z)−1/2 ∀z ∈ C+

}
.

B(E) with the scalar product

[F,G] =
1
π

∫
R

F (λ)G(λ)
dλ

|E(λ)|2

is a Hilbert space. Moreover, the reproducing kernels

Jz(ζ) =
E(z)E(ζ)− E(z)E(ζ)

2i(z − ζ)

belong to B(E) for every z ∈ C and [Jz, F ] = F (z) for all F ∈ B(E). We now
describe how de Branges spaces occur in the spectral representation of Schrödinger
operators. For (much) more on the general theory of de Branges spaces, see the
classic [1].

Consider the Schrödinger equation (1.1) on 0 ≤ x ≤ N , with potential V ∈
L1(0, N) and Dirichlet boundary condition at the origin and arbitrary (self-adjoint)
boundary condition at x = N :

y(0) = 0, y(N) sinβ + y′(N) cosβ = 0.(2.1)

The associated self-adjoint operators Hβ
N = −d2/dx2 + V (x) with domains

D(Hβ
N ) =

{
y ∈ L2(0, N) : y, y′ absolutely continuous,

− y′′ + V y ∈ L2(0, N), y satisfies (2.1)
}

have simple, purely discrete spectrum. A spectral representation can thus be ob-
tained by expanding in terms of eigenfunctions. Usually, one proceeds as follows.
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Let u(x, z) be the solution of (1.1) with the initial values u(0, z) = 0, u′(0, z) = 1,
and define a Borel measure ρβN by

ρβN =
∑ δλ
‖u(·, λ)‖2L2(0,N)

.

The sum is over the eigenvalues λ of Hβ
N , and δλ is the Dirac measure at λ (so

δλ({λ}) = 1, δλ(R \ {λ}) = 0). Then the operator U acting as

(Uf)(λ) =
∫
u(x, λ)f(x) dx(2.2)

maps L2(0, N) unitarily onto L2(R, dρβN ). At this point, de Branges spaces enter
the game. Namely, this space L2(R, dρβN ) can be identified as a de Branges space.
To do this, let EN (z) = u(N, z) + iu′(N, z). Then EN is obviously entire, and
it also satisfies |EN (z)| > |EN (z)| (z ∈ C+) – in fact, this inequality is nothing
but the well known fact that −u′/u is a Herglotz function in disguise. So EN is a
de Branges function. We will denote the de Branges space B(EN ) based on this
function by SN .

Theorem 2.1. The Hilbert spaces SN and L2(R, dρβN ) are identical. More pre-
cisely, if F (z) ∈ SN , then the restriction of F to R belongs to L2(R, dρβN ), and this
restriction map is unitary from SN onto L2(R, dρβN ).

The map

U : L2(0, N)→ SN

(Uf)(z) =
∫
u(x, z)f(x) dx

maps L2(0, N) unitarily onto SN .

This is the analog of [8, Theorem 3.1] and the remark following it for Dirichlet
boundary conditions, and it has the same proof. Note that the U from Theorem
2.1 is just the composition of the U from (2.2) with the inverse of the restriction
map from the first part of Theorem 2.1. As a corollary of the last part of Theorem
2.1, we have the following description of SN as a set:

SN =
{
F (z) =

∫
u(x, z)f(x) dx : f ∈ L2(0, N)

}
.(2.3)

It also follows that SN is isometrically contained in SN ′ if N ≤ N ′. Indeed, these
spaces are the images of L2(0, N) and L2(0, N ′), respectively, under the unitary
map U from Theorem 2.1. Similarly, if V is defined on (0,∞) and ρ is a spectral
measure of the half line problem, the SN may be identified (by restricting the
functions from SN to R) with a subspace of L2(R, dρ). This follows in the same
way from the fact the U from (2.2) also maps L2(0,∞) unitarily onto L2(R, dρ).

It is possible to characterize the de Branges spaces that come in this way from
a Schrödinger equation. This characterization may be viewed as the general direct
and inverse spectral theory for one-dimensional Schrödinger operators, formulated
in the language of de Branges spaces. We begin with the “direct” theorems. They
are the analogs of [8, Theorems 4.1, 4.2].
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Theorem 2.2. As a set, SN is given by

SN =
{
F (z) =

∫
f(x)

sin
√
zx√
z

dx : f ∈ L2(0, N)
}
.

This set is just what (2.3) gives for zero potential, so Theorem 2.2 says that
SN as a vector space is independent of the potential. The next result shows that
the scalar product on SN is a small perturbation of the scalar product for zero
potential.

Theorem 2.3. Let V ∈ L1(0, N). Then there exist a unique A ∈ L1(0, N), so that
for all F ∈ SN ,

‖F‖2SN = 〈f, (1 +KA)f〉L2(0,N),

where KA is the integral operator defined in (1.3) and f is related to F as in
Theorem 2.2.

The proof of Theorem 2.2 is completely analogous to the proof of [8, Theorem
4.1] and will be omitted. The proof of Theorem 2.3 is also more or less analogous to
the proof of [8, Theorem 4.2] (additional, if harmless, complications arise because
in contrast to the situation for Neumann boundary conditions, Â need not be a
function). This proof, however, will be discussed in detail in the next section
because it is precisely there that we make contact with Simon’s theory [10].

The “inverse” theorem asserts that a de Branges space that has the properties
stated in Theorems 2.2, 2.3 actually comes from a Schrödinger equation. Such a
de Branges space is determined by the function A from Theorem 2.3. Clearly, if A
is as in Theorem 2.3, then 1 +KA must be a positive operator, that is, A ∈ AN . In
other words, Theorems 2.2, 2.3 associate with each de Branges space coming from
a Schrödinger equation on (0, N) a function A ∈ AN . Here is the converse.

Theorem 2.4. Let A ∈ AN . Then there exists a unique potential V ∈ L1(0, N)
such that the norm on the de Branges space SN associated with (1.1) with this V
is given by

‖F‖2SN = 〈f, (1 +KA)f〉L2(0,N).

Here, F (z) =
∫
f(t) sin

√
zt√
z

dt, f ∈ L2(0, N).

Theorem 2.4 is the analog of [8, Theorem 5.1]. One can use the method of [8]
to prove Theorem 2.4, but a number of modifications are necessary. This will be
discussed in the appendix.

3. The A function

Let V ∈ L1(0, N). Our first goal in this section is to prove Theorem 2.3 by
appropriately defining an A function, A ∈ L1(0, N). Basically, we follow the method
that was used in [8, Sect. 4] to define the φ function. Later, it will turn out that the
A from Theorem 2.3 also is the A function in the sense of [10]. It is also possible
to do things the other way around: one can define A as in [10] and then use the
results from [3] to prove that this A also is the A from Theorem 2.3.

We proceed as follows. Let ρN be the spectral measure of the problem on [0,∞)
with potential

VN (x) =

{
V (x) x < N

0 x > N
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and Dirichlet boundary condition at the origin. Let dρ0(λ) = π−1χ(0,∞)(λ)
√
λ dλ

be the spectral measure of the half line problem with zero potential, and introduce
the signed measure σ = ρN − ρ0. Formally, we want to define A by

A(t) = −2
∫

sin 2t
√
λ√

λ
dσ(λ),(3.1)

but this integral does not, in general, exist, so (3.1) needs to be interpreted appro-
priately. Note also that if A is defined via the representation formula for m (see
Sect. 1), then a variant of (3.1), in various interpretations, is established in [3] (see
also [7]). We will not use these results here.

As VN is a compactly supported potential, the spectral measure ρN is purely
absolutely continuous on (0,∞), and there are only finitely many negative eigen-
values. To obtain a more detailed description of ρN , we use the m function mN of
the problem on [0,∞) with potential VN and Dirichlet boundary condition. The
following lemma collects some properties of mN . It will be convenient to write the
spectral parameter as z = k2 and use k as the variable. The m function for zero
potential will be denoted by m0, so m0(z) =

√
−z, where the square root must be

chosen so that m0 maps C+ to itself.

Lemma 3.1. a) mN extends to a meromorphic function on C \ [0,∞). MN (k) ≡
mN (k2), originally defined for k ∈ C+, then extends to a meromorphic function on
C. The poles of MN in C+ are iκ1, . . . , iκn (n ∈ N0) and possibly 0; here, κi > 0
and −κ2

1, . . . ,−κ2
n are the negative eigenvalues. These poles are simple.

b) The limit mN (λ) ≡ limε→0+mN (λ+ iε) exists for all λ > 0 and

χ[0,∞)(λ) dρN (λ) =
1
π
χ(0,∞)(λ) Im mN (λ) dλ.

c) For k ∈ R, |k| → ∞, the following asymptotic formula holds:

Im (mN (k2)−m0(k2)) = −
∫ N

0

V (x) sin 2|k|x dx+O(|k|−1).

Since this is completely standard, we will not give the proof. See, for example,
[2]. One uses the fact that mN (k2) = f ′N (0, k)/fN (0, k), where fN is the solution
of −f ′′ + VNf = k2f with fN (x, k) = eikx for x ≥ N .

We now return to (3.1). The integral over (−∞, 0) is a finite sum and does
not pose any difficulties. The integral over [0,∞) will be defined as a distribution.
More precisely, if g ∈ S is a test function from the Schwartz space S, we let

(A+, g) = −2
∫ ∞

0

dσ(λ)
∫ ∞
−∞

dx g(x)
sin 2
√
λx√

λ
.(3.2)

The x integral defines a bounded, rapidly decaying function of λ ∈ (0,∞), so by
Lemma 3.1, the right-hand side of (3.2) is well defined. Moreover, (A+, g) depends
continuously on g in the topology of S. Hence (3.2) defines a tempered distribution
A+ ∈ S ′. We now compute the Fourier transform Â+ of A+, which is defined by
(Â+, g) = (A+, ĝ). We use the convention

ĝ(k) =
1√
2π

∫
g(x)e−ikx dx
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(so g(x) = (2π)−1/2
∫
ĝ(k)eikx dk). The measure σ can be rewritten with the help

of Lemma 3.1b).

(Â+, g) = i

∫ ∞
0

dσ(λ)√
λ

∫ ∞
−∞

dx ĝ(x)
(
e2i
√
λx − e−2i

√
λx
)

= i
√

2π
∫ ∞

0

dσ(λ)√
λ

(
g(2
√
λ)− g(−2

√
λ)
)

= i

√
2
π

∫ ∞
0

dk Im (mN −m0)(k2/4) (g(k)− g(−k))

We now want to perform the substitution k → −k in the term involving g(−k), but
one must be careful because due to the possible pole of MN at k = 0, the two inte-
grals need not exist separately. Therefore, we must first renormalize appropriately.
By Lemma 3.1a), the limit

a = lim
k→0+

k Im mN (k2)

exists. Moreover, Im (mN −m0)(k2)− a/k remains bounded as k → 0+. Thus we
can split the integral as follows:

(3.3)
∫ ∞

0

dk Im (mN −m0)(k2/4) (g(k)− g(−k)) =∫ ∞
0

dk

(
Im (mN −m0)(k2/4)− 2a

k

)
(g(k)− g(−k))+2a

∫ ∞
0

g(k)− g(−k)
k

dk.

Both integrals on the right-hand side exist, and the last integral equals (PV (1/k), g),
where PV (1/k) is the principal value distribution

(PV (1/k), g) = lim
δ→0+

∫
|k|>δ

g(k)
k

dk.

Moreover, in the first term of the right-hand side of (3.3), the integrals with g(k)
and g(−k) exist separately, and thus we may now substitute k′ = −k in the second
term to obtain∫ ∞

0

(
Im (mN −m0)(k2/4)− 2a

k

)
(g(k)− g(−k)) dk =∫ ∞

−∞

(
sgn(k) Im (mN −m0)(k2/4)− 2a

k

)
g(k) dk.

Here, sgn(k) is the sign of k, that is, sgn(k) = 1 if k > 0 and sgn(k) = −1 if k < 0.
Putting things together, we thus see that Â+ is a function plus the principal value
distribution. More precisely,

Â+(k) = i

√
2
π

(
sgn(k) Im (mN −m0)(k2/4)− 2a

k

)
+ 2ia

√
2
π
PV (1/k).(3.4)

Lemma 3.1c) now shows that

Â+(k) = −i
√

2
π

∫ N

0

V (t) sin kt dt+ 2ia

√
2
π
PV (1/k) + R̂N (k),
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where R̂N is a bounded function that is continuous away from k = 0 and satisfies
|R̂N (k)| ≤ C/|k|. Since

PV (1/k) = i

√
π

2
(sgn(t))̂(k),(3.5)

it follows that

A+(t) = sgn(t) (VN (|t|)− 2a) +RN (t),

where RN ∈ L2(R). In particular, A+ is a function. We now put

A(t) = A+(t)− 2
∫ 0

−∞

sin 2t
√
λ√

λ
dσ(λ) = A+(t)− 2

∑
n

ρN ({−κ2
n})

sinh 2κnt
κn

.

(3.6)

Recall that the −κ2
n’s are just the eigenvalues of −d2/dx2 + VN (x). In particular,

the sum is finite. This completes our definition of A(t) ∈ L1(0, N), following the
recipe (3.1). We have in fact obtained an odd, locally integrable function on R.
This function depends on N , but, as we will see shortly, its restriction to (0, N)
does not.

The primitive of A also is an important function in inverse spectral theory. So
let

φ(x) =
∫ |x|/2

0

A(t) dt =
∫ x/2

0

A(t) dt.

Lemma 3.2. If g ∈ C∞0 (R),
∫
g(x) dx = 0, then∫ ∞

−∞
φ(x)g(x) dx =

∫ ∞
−∞

dσ(λ)
∫ ∞
−∞

dx g(x)
cos
√
λx

λ
.

Note that since
∫
g = 0, the integral∫ ∞

−∞
g(x)

cos
√
λx

λ
dx =

∫ ∞
−∞

g(x)
cos
√
λx− 1
λ

dx

remains bounded as λ→ 0.

Proof. Let φ+(x) =
∫ x/2

0
A+(t) dt. Since

∫
g = 0, we can write g = f ′ with f ∈ C∞0 .

Hence, by the definition of A+,∫ ∞
−∞

φ+(x)g(x) dx = −
∫ ∞
−∞

φ′+(x)f(x) dx = −
∫ ∞
−∞

A+(x)f(2x) dx

= 2
∫ ∞

0

dσ(λ)
∫ ∞
−∞

dx f(2x)
sin 2
√
λx√

λ

=
∫ ∞

0

dσ(λ)
∫ ∞
−∞

dx f(x)
sin
√
λx√
λ

.

An integration by parts shows that∫ ∞
−∞

f(x)
sin
√
λx√
λ

dx =
∫ ∞
−∞

g(x)
cos
√
λx

λ
dx.
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Finally, φ(x) = φ+(x)−
∑
ρN ({−κ2

n}) coshκnx−1
κ2
n

, and since − coshκnx
κ2
n

= cos iκnx
(iκn)2 , it

is clear that∫ ∞
−∞

(
−
∑

ρN ({−κ2
n})

coshκnx
κ2
n

)
g(x) dx =

∫ 0

−∞
dσ(λ)

∫ ∞
−∞

dx g(x)
cos
√
λx

λ
.

On the left-hand side, we have dropped the 1’s in the numerators. This is possible
because

∫
g = 0.

We can now prove Theorem 2.3.

Proof of Theorem 2.3. As expected, we claim that the sought function A is the
function constructed above. So we have to show that for all f ∈ L2(0, N),

‖F‖2SN = 〈f, (1 +KA)f〉L2(0,N),

where F (z) =
∫
f(x) sin

√
zx√
z

dx and KA is constructed from A as in (1.3). Let us
first verify this for f ∈ C∞0 (0, N). Extend f by setting f(−x) = −f(x) for x > 0.
By the discussion following Theorem 2.1, we have that ‖F‖SN = ‖F‖L2(R,dρN ).
Now ∫

|F (λ)|2 dρN (λ) = ‖f‖2L2(0,N) +
∫
|F (λ)|2 dσ(λ)

and∫
|F (λ)|2 dσ(λ) =

∫
dσ(λ)

∫ N

0

∫ N

0

ds dt f(s)f(t)
sin
√
λs√
λ

sin
√
λt√
λ

=
1
4

∫
dσ(λ)

∫ N

−N

∫ N

−N
ds dt f(s)f(t)

sin
√
λs√
λ

sin
√
λt√
λ

=
1
8

∫
dσ(λ)

∫ N

−N

∫ N

−N
ds dt f(s)f(t)

cos
√
λ(s− t)− cos

√
λ(s+ t)

λ

=
1
4

∫
dσ(λ)

∫ N

−N

∫ N

−N
ds dt f(s)f(t)

cos
√
λ(s− t)
λ

=
1
4

∫
dσ(λ)

∫
dr g(r)

cos
√
λr

λ
,(3.7)

where

g(r) =
1
2

∫
f

(
u+ r

2

)
f

(
u− r

2

)
du ∈ C∞0 (R).

Note that ∫
g(r) dr =

∫
f(s) ds

∫
f(t) dt = 0.

This shows, first of all, that the integral from (3.7) exists; so the manipulations
leading to (3.7) were justified. Second, Lemma 3.2 applies, and we obtain∫

|F (λ)|2 dσ(λ) =
1
4

∫ ∞
−∞

φ(r)g(r) dr

=
1
4

∫ N

−N

∫ N

−N
ds dt f(s)f(t)φ(s− t).
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Since φ is even, the steps of the above computation can be reversed and we get the
desired formula∫

|F (λ)|2 dσ(λ) =
1
2

∫ N

0

∫ N

0

ds dt f(s)f(t) (φ(s− t)− φ(s+ t))

= 〈f,KAf〉L2(0,N).

So far, this has been proved for f ∈ C∞0 (0, N). If f ∈ L2(0, N) is arbitrary, pick
fn ∈ C∞0 (0, N) so that fn → f in L2(0, N). Since then Fn(z) =

∫
fn(t) sin

√
zt√
z

dt is
a norm bounded sequence in SN , we can extract a weakly convergent subsequence
(wlog the original sequence). The existence of reproducing kernels on SN implies
that Fn also converges pointwise to its weak limit. On the other hand, it is clear
that

Fn(z) =
∫
fn(t)

sin
√
zt√
z

dt→
∫
f(t)

sin
√
zt√
z

dt = F (z),

so the weak limit of Fn is F . It follows that

‖F‖2SN ≤ lim inf
n→∞

‖Fn‖2SN = lim
n→∞

〈fn, (1 +KA)fn〉 = 〈f, (1 +KA)f〉.

This inequality, applied to F −Fn in place of F , shows that Fn → F in the norm of
SN . So, by going to the limit a second time, we see that ‖F‖2SN = 〈f, (1 +KA)f〉,
as desired.

Uniqueness of A is easy. If 〈f,KAf〉 = 〈f,KÃf〉 for all f ∈ L2(0, N), then, since
the kernels are continuous, they must be identically equal to one another. It follows
that A = Ã almost everywhere.

We can now establish the fact that A on (0, N) is independent of N . More pre-
cisely, we consider the following situation. Let 0 < N1 ≤ N2, and let A1, A2 be
the corresponding A functions, constructed as above. Then, since these functions
are the A’s from Theorem 2.3 and since SN1 is a subspace of SN2 , we have that
〈f,KA1f〉 = 〈f,KA2f〉 for all f ∈ L2(0, N1). It follows that A1 = A2 almost
everywhere on (0, N1).

Next, we show that the function A constructed above really is the A function
in the sense of [10]. As remarked above, this does not come as a surprise because
(3.1) basically is the formula from [3] for Simon’s A.

Theorem 3.3. If Im k > maxκn, then

mN (k2) = ik −
∫ ∞

0

A(t)e2ikt dt.

More generally, if k ∈ C+, k /∈ {iκn}, then

mN (k2) = ik −
∫ ∞

0

A+(t)e2ikt dt−
∑ ρN ({−κ2

n})
κ2
n + k2

.

Proof. By the Herglotz representations of mN and m0(k2) = ik, we have that

mN (k2) = ik + c+
∫ ∞
−∞

(
1

λ− k2
− λ

λ2 + 1

)
dσ(λ),(3.8)
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where c is a constant. Meromorphic continuation allows us to use (3.8) for k ∈ C+,
k /∈ {iκn}. The integral over (−∞, 0) can be evaluated right away as∫ 0

−∞

(
1

λ− k2
− λ

λ2 + 1

)
dσ(λ) = −

∑ ρN ({−κ2
n})

κ2
n + k2

+ d.(3.9)

It remains to analyze the integral over (0,∞). Instead of regularizing by subtracting
λ/(λ2+1), we use a cut-off. (Something of this sort is needed because it can happen
that

∫ d|σ|(λ)
1+|λ| = ∞.) Let ϕ ∈ C∞0 (R) be even, with 0 ≤ ϕ ≤ 1 and ϕ(0) = 1. We

claim that for k ∈ C+,

lim
ε→0+

∫ ∞
0

ϕ(2ε
√
λ)

λ− k2
dσ(λ) = −

∫ ∞
0

A+(t)e2ikt dt.(3.10)

The assertions of Theorem 3.3 will follow from (3.10). Indeed, by dominated con-
vergence,

lim
ε→0+

∫ ∞
0

(
1

λ− k2
− λ

λ2 + 1

)
ϕ(2ε
√
λ) dσ(λ) =

∫ ∞
0

(
1

λ− k2
− λ

λ2 + 1

)
dσ(λ),

so plugging (3.9), (3.10) into (3.8) gives the second formula from Theorem 3.3,
possibly with an additional constant on the right-hand side. But the asymptotic
relation (mN −m0)(iy) → 0 (y → ∞) shows that this constant is zero. The first
formula from Theorem 3.3 is an immediate consequence of the second one; we just
have to recall (3.6) and note that for Im k > κ,

2
∫ ∞

0

sinh 2κt
κ

e2ikt dt =
1

−κ2 − k2
.

So it remains to prove (3.10). We use the formula

1
λ− k2

=
∫ ∞

0

eikx
sin
√
λx√
λ

dx,

which is valid for λ > 0 and k ∈ C+. We also use Lemma 3.1b) and (3.4), (3.5).∫ ∞
0

ϕ(2ε
√
λ)

λ− k2
dσ(λ) =

2
π

∫ ∞
0

dl Im (mN −m0)(l2)ϕ(2εl)
∫ ∞

0

dx eikx sin lx

=
1
π

∫ ∞
−∞

dl sgn(l)Im (mN −m0)(l2/4)ϕ(εl)
∫ ∞

0

dx e2ikx sin lx

=
−i√
2π

∫ ∞
−∞

dl (A+ + 2a sgn)̂(l)ϕ(εl)
∫ ∞

0

dx e2ikx sin lx

+
2a
π

∫ ∞
−∞

dl

l
ϕ(εl)

∫ ∞
0

dx e2ikx sin lx.

It was legitimate to split the integral in the last step, because the two integrals
exist separately. In fact, this last integral can be evaluated in the limit ε → 0+.
By dominated convergence again, the limit is just the integral without the cut-off
function ϕ, and

2a
π

∫ ∞
−∞

dl

l

∫ ∞
0

dx e2ikx sin lx =
ia

k
.
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Furthermore, since (A+ + 2a sgn)̂ (l) is an odd function, we have that

−i√
2π

∫ ∞
−∞

dl (A+ + 2a sgn)̂(l)ϕ(εl)
∫ ∞

0

dx e2ikx sin lx

=
−1√
2π

∫ ∞
−∞

dl (A+ + 2a sgn)̂(l)ϕ(εl)
∫ ∞

0

dx e2ikxeilx

= −
∫ ∞
−∞

(A+ + 2a sgn)̂(l)ϕ(εl)h(l) dl,

where h(l) = (2π)−1/2
∫∞

0
e2ikxeilx dx. Thus ĥ(x) = χ(0,∞)(x)e2ikx. Note also that

we used the fact that (A+ + 2a sgn)̂(l) remains bounded as l→ 0.
Now ϕ(εl)h(l) is a test function, so the definition of the Fourier transform of a

distribution shows that∫ ∞
−∞

(A+ + 2a sgn)̂(l)ϕ(εl)h(l) dl =
∫ ∞
−∞

(A+(t) + 2a sgn(t)) (ϕ(ε·)h)̂(t) dt.

Writing the Fourier transform of the product as a convolution of Fourier transforms,
one can show without much difficulty that (ϕ(ε·)h)̂→ ĥ as ε → 0+. Dominated
convergence again applies and thus

lim
ε→0+

∫ ∞
−∞

(A+(t) + 2a sgn(t)) (ϕ(ε·)h)̂(t) dt =
∫ ∞

0

(A+(t) + 2a sgn(t)) e2ikt dt

=
∫ ∞

0

A+(t)e2ikt dt+
ia

k
.

Now (3.10) follows by collecting terms.

The identification of A as Simon’s A function provided by Theorem 3.3 allows us
to deduce Theorem 1.1 from the results of Sect. 2.

Proof of Theorem 1.1. If a potential V ∈ L1(0, N) is given, then, by Theorem 3.3,
we can construct its unique A function A0 ∈ L1(0, N) (in the sense of [10]) by the
method above. This means that A0 is also the A from Theorem 2.3, so 1 +KA0 is
a positive definite operator, hence A0 ∈ AN .

Conversely, if A0 ∈ AN is given, Theorem 2.4 shows that A0 comes from a
potential V ∈ L1(0, N), in the sense of Theorem 2.3. But now uniqueness of A0

and Theorem 3.3 show that A0 is the A function of this V also in the sense of
[10].

4. The A equation

We now consider the family A(·, x), where A(·, x) ∈ L1(0, N−x) is the A function
of the problem on [x,N ] (or, equivalently, of the shifted potential Vx(·) = V (x+ ·)).
Our first task is to give, for non-smooth A, an interpretation of the basic equation
(1.4) suitable for our purposes. The key to this is the following regularity result
from [10].

Theorem 4.1 (Simon). Let V ∈ L1(0, N). Then A(t, x) − V (x + t) is (jointly)
continuous on ∆N = {(t, x) : 0 ≤ x ≤ N, 0 ≤ t ≤ N − x}. Moreover, A(0, x) −
V (x) = 0 for all x ∈ [0, N ].
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More precisely, the statement is that given a realization of V ∈ L1(0, N), there
exist realizations of the functions A(·, x) ∈ L1(0, N − x), such that the asserted
continuity holds. (If one views V and A(·, x) as functions on the open intervals
(0, N) and (0, N−x), respectively, then it is also being asserted thatA(t, x)−V (x+t)
has a continuous extension to the closed triangle ∆N .)

Theorem 4.1 is part of what [10, Theorem 2.1] states. (There is a typo in estimate
(2.4) of [10, Theorem 2.1]: A(α; q) and A(α; q̃) should be replaced by A(α; q)−q(α)
and A(α; q̃) − q̃(α), respectively.) If interpreted in the light of (1.4), Theorem 4.1
says that the singularities of A propagate along the characteristics x + t = const.
of the linear part Ax = At without changing their shape.

Theorem 4.1 suggests to regularize by subtracting V (x+ t). Actually, Theorem
4.1, specialized to x = 0, also says that A(t, 0)−V (t) ∈ C[0, N ], so if we impose the
initial condition A(t, 0) = A0(t), we may as well regularize by subtracting A0(x+t).
In fact, this second method is more convenient because it incorporates the initial
condition in an explicit way. So, formally, we proceed as follows. Let

B(t, x) = A(t− x, x)−A0(t) (0 ≤ x ≤ t ≤ N).(4.1)

Obviously, B(t, 0) = 0 if A satisfies the initial condition. Moreover, still working
on a formal level, we have that ∂B/∂x = ∂A/∂x− ∂A/∂t, so if A also solves (1.4),
then

B(t, x) =
∫ x

0

dy

∫ t−y

0

ds (B(y + s, y) +A0(y + s)) (B(t− s, y) +A0(t− s)) .

(4.2)

If A actually is an A function, then B is continuous by the above remarks. Now
the right-hand side of (4.2) makes sense for general B ∈ C(∆′N ), A0 ∈ L1(0, N),
where ∆′N is the triangle

∆′N = {(t, x) : 0 ≤ x ≤ t ≤ N}.

Indeed,
∫ t−y

0
A0(y+ s)A0(t− s) ds is an integral of convolution type and defines an

integrable function of y. The other terms from (4.2) are obviously well defined for
B ∈ C(∆′N ), A0 ∈ L1(0, N).

We take (4.2) as our interpretation of (1.4) together with the initial condition
A(t, 0) = A0(t).

Definition 4.1. Let A0 ∈ L1(0, N). We say that B solves the problem (A0) if
B ∈ C(∆′N ) and (4.2) holds.

It is quite clear and will be proved shortly (see Theorem 4.4 below) that if A(t, x)
is an A function for some potential and A0(t) = A(t, 0), then B from (4.1) solves
the problem (A0) – in fact, this was the property that motivated Definition 4.1 in
the first place.

We can now give a precise version of the statement discussed in the introduction.

Theorem 4.2. Suppose A0 ∈ L1(0, N). Then the problem (A0) has a solution if
and only if A0 ∈ AN .

This result and its consequences will be discussed in more detail in the next
section. We now define a related problem associated with (1.4), and we establish
uniqueness results. These tools will be needed in the proof of Theorem 4.2.
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So, consider the boundary value problem (1.4), A(0, x) = V (x), where the func-
tion V ∈ L1(0, N) is given. We follow the recipe that led to Definition 4.1 and
introduce

C(t, x) = A(t− x, x)− V (t).(4.3)

Theorem 4.1 shows that if A is an A function, then C ∈ C(∆′N ) and C(t, t) = 0.
So the equation for C should be

C(t, x) = −
∫ t

x

dy

∫ t−y

0

ds (C(y + s, y) + V (y + s)) (C(t− s, y) + V (t− s)) .

(4.4)

Again, we turn things around and take this as the definition of (1.4) together with
A(0, x) = V (x).

Definition 4.2. Let V ∈ L1(0, N). We say that C solves the problem (V ) if
C ∈ C(∆′N ) and (4.4) holds.

Next, we present a lemma that must be true if our definitions were reasonable.
It just reflects, on the level of Definitions 4.1, 4.2, the trivial fact that if A solves
(1.4), A(t, 0) = A0(t), then it also solves (1.4), A(0, x) = V (x), where we simply
define V as these boundary values; and, of course, this also works the other way
around.

Lemma 4.3. a) Suppose A0 ∈ L1(0, N), and let B ∈ C(∆′N ) be a solution of the
problem (A0). Define V (x) = B(x, x) + A0(x), C(t, x) = B(t, x) + A0(t) − V (t).
Then V ∈ L1(0, N), and C solves (V ).

b) Suppose V ∈ L1(0, N), and let C ∈ C(∆′N ) be a solution of the problem (V ).
Define A0(t) = C(t, 0)+V (t), B(t, x) = C(t, x)+V (t)−A0(t). Then A0 ∈ L1(0, N),
and B solves (A0).

Proof. This is checked by straightforward computations, which we leave to the
reader.

The next theorem also is something that had better be true if the above definitions
make precise what we had in mind originally. It was already announced above.

Theorem 4.4. Let V ∈ L1(0, N), and let A(t, x) be the A functions of this poten-
tial for variable left endpoint x, as in Theorem 4.1. Let A0(t) = A(t, 0), and define
B and C by (4.1) and (4.3), respectively. Then B solves (A0) and C solves (V ).

Sketch of proof. Theorem 4.4 is a minor variation on the results of [10, Sect. 6],
and we can use the same method of proof. For smooth V (V ∈ C1, say), A is also
smooth and satisfies (1.4) pointwise [10]. But for smooth A, (1.4) with the initial
condition A(t, 0) = A0(t) is equivalent to the problem (A0) from Definition 4.1.
Here, A and B are related as in (4.1). So, B from (4.1) solves (A0), and, by an
analogous argument, C from (4.3) solves (V ).

For general V ∈ L1(0, N), approximate V in L1 norm by smooth potentials
Vn. Then, by the above, the corresponding functions Bn, Cn solve the problems
(A(n)

0 ) and (Vn), respectively. On the other hand, [10, Theorem 2.1] implies that
A

(n)
0 → A0 in L1(0, N) and Bn → B, Cn → C in C(∆′N ), so the assertions follow

by going to the limits in (4.2), (4.4).
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We now establish uniqueness of the solutions to the boundary value problems as-
sociated with (1.4).

Theorem 4.5. a) Suppose A0 ∈ L1(0, N), and let B1, B2 ∈ C(∆′N ) be solutions of
(A0). Then B1 ≡ B2.

b) Suppose V ∈ L1(0, N), and let C1, C2 ∈ C(∆′N ) be solutions of (V ). Then
C1 ≡ C2.

Proof. We will only prove part b). The proof of a) is similar (a trifle easier, in fact);
also, part a) is just a version of [10, Theorem 7.1]. Moreover, part a) is not needed
in the proof of Theorem 4.2.

Let C1, C2 be as in the hypothesis, and define, for 0 ≤ t ≤ x ≤ N , Di(t, x) =
Ci(x, x− t). Then, by a computation, the Di solve

Di(t, x) =

−
∫ t

0

du

∫ u

0

ds (Di(s, x− u+ s) + V (x− u+ s)) (Di(u− s, x− s) + V (x− s)) .

Let

M(T ) = max {|D2(t, x)−D1(t, x)| : 0 ≤ t ≤ T, t ≤ x ≤ N} ,
and put a = max |Di(t, x)|, where the maximum is taken over 0 ≤ t ≤ x ≤ N and
i = 1, 2. Since

(4.5) D2(t, x)−D1(t, x) =∫ t

0

du

∫ u

0

ds (D2(s, x− u+ s) + V (x− u+ s)) (D1(u− s, x− s)−D2(u− s, x− s))

+
∫ t

0

du

∫ u

0

ds (D1(s, x− u+ s)−D2(s, x− u+ s)) (D1(u− s, x− s) + V (x− s)) ,

we have the estimate

M(T ) ≤
(
aT + 2‖V ‖L1(0,N)

)
TM(T ).

This immediately implies that M(t0) = 0, provided that t0 > 0 is taken so small
that (aN + 2‖V ‖)t0 < 1. But then the integrals from (4.5) can be taken over a
smaller region. We can let the u integrals start at u = t0, and similar truncations
are possible in the s integrals. Hence by running through the same argument again,
we see that M(2t0) = 0. We get the full claim in a finite number of steps.

Proof of Theorem 4.2. If A0 ∈ AN , then by Theorem 1.1, A0 is the A function
of some potential V ∈ L1(0, N). Construct the A(·, x) functions of this V . Then
A(t, 0) = A0(t) for almost every t ∈ [0, N ]. Pick a new representative of A0 ∈
L1(0, N) by requiring this equality to hold everywhere, and define B by (4.1). By
Theorem 4.4, B solves (A0).

Conversely, if A0 ∈ L1(0, N) and B ∈ C(∆′N ) solves (A0), define V ∈ L1(0, N)
and C ∈ C(∆′N ) as in Lemma 4.3a). By this Lemma, C solves (V ). On the other
hand, if A(t, x) is the family of A functions of this potential V (as in Theorem 4.1)
and if C̃(t, x) = A(t−x, x)−V (t), then, by Theorem 4.4, C̃ also solves (V ). Hence,
by Theorem 4.5b), C ≡ C̃. In particular,

A(t, 0) = C̃(t, 0) + V (t) = C(t, 0) + V (t) = B(t, 0) +A0(t) = A0(t).

So A0 = A(·, 0) is an A function and hence must be in AN by Theorem 1.1.
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5. Further remarks

We have proved that the problem (A0) has a solution if and only if A0 ∈ AN ,
and this holds precisely if A0 is the A function of some potential. In that case,
the solution B is unique, and A(t, x) = B(x + t, x) + A0(x + t) is the family of
A functions and, still more importantly, V (x) = A(0, x) = B(x, x) + A0(x) is the
potential whose A function A0 is. On the other hand, if A0 does not come from
a potential, (A0) has no global solution on ∆′N . So we can attack the problem of
reconstructing V from A0 as follows. Try to solve (A0), for example by iterating
(4.2). This will always work if A0 comes from a potential. If A0 does not come
from a potential, the equation will also detect this: there is no solution.

We can say more on this latter scenario. Suppose that A0 ∈ L1(0, N) \ AN .
Define

s = inf {N ′ > 0 : A0 /∈ AN ′} .

Since AN ′ , viewed as a subset of L1(0, N), is open, the infimum is actually a
minimum. Also, s > 0, because for any given function A0 ∈ L1(0, N), the operator
norm of KA0 in L2(0, N ′) tends to zero as N ′ → 0+.

By the definition of s, the problem (A0) can be solved on ∆′N ′ for every N ′ < s,
but not on ∆′s. This means that a discontinuity must develop on the line t = s.
This does not happen in no time. By this we mean that there exists x0 ∈ (0, s] so
that the solution B(t, x) has a continuous extension to ∆′s \ {(s, x) : x0 ≤ x ≤ s},
but not to this set together with the point (s, x0).

Most of these properties follow directly from the definition of s and the fact that
restrictions of solutions of (A0) to smaller triangles ∆′N ′ still solve (A0). The only
statements that remain to be proved are the description of the formation of the
singularity and the inequality x0 > 0. However, this follows from the general fact
that one can always (that is, for arbitray A0 ∈ L1(0, N)) solve (4.2) on a small strip
0 ≤ x ≤ δ. To see this, note that the right-hand side of (4.2) is locally Lipschitz
continuous in B in the norm of C(∆′N ), with small Lipschitz constant if 0 ≤ x ≤ δ
and δ > 0 is small. One can thus prove the claim by a Picard type iteration, using
the contraction mapping principle. It also follows that (4.2) has the continuation
property that ODEs possess: if (4.2) can be solved for 0 ≤ x ≤ δ, then one can
extend to a larger strip 0 ≤ x ≤ δ′ (δ′ > δ).

Appendix A.

In this appendix, we make some remarks on the proof of Theorem 2.4. This
is not intended to be a self-contained sketch of the proof. Rather, we give some
hints that should enable a reader who is familiar with [8] to carry out the proof. In
particular, we will use the notation from [8] without further explanation.

One starts out as in [8, Sect. 9]. Given A ∈ AN , one defines the Hilbert spaces

Hx =
{
F (z) =

∫
f(t)

sin
√
zt√
z

dt : f ∈ L2(0, x)
}
,

‖F‖2Hx = 〈f, (1 +KA)f〉L2(0,x),

and verifies that the Hx are de Branges spaces. The inverse theorem of de Branges
[8, Theorem 7.1] yields a canonical system, and the aim is to check that this system
is as in [8, Proposition 8.1], but now with h(0) = 0, h′(0) = 1. This will prove that
HN comes from a Schrödinger equation with Dirichlet boundary conditions.
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The main modification occurs in Sect. 13 of [8]. One again defines a conjugate
mapping F 7→ F̂ (0) on Hx by F̂ (0) =

∫
f(t)ψ(t) dt, but this time with

ψ(t) = −1−
∫ t

0

φ(s) ds.

In this context, recall that φ(t) =
∫ t/2

0
A(s) ds. Proposition 13.1 still holds, with

an analogous proof. One can then define y, w as in Theorem 13.2, and one obtains
the new integral equations

y(x, t) +
∫ x

0

K(t, s)y(x, s) ds = t,

w(x, t) +
∫ x

0

K(t, s)w(x, s) ds = ψ(t),

where K is the kernel from (1.3). Similar changes occur in the formulae of Theorem
15.2; for instance, we now have

H11(x) = xy(x, x) +
∫ x

0

tyx(x, t) dt.

The crucial Wronskian type identity of Proposition 15.3 continues to hold, but the
initial values of y are now given by y(0, 0) = 0, y′(0, 0) = 1. The proof can be
completed as in Sect. 16 of [8].
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