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We explicitly construct non-tempered cusp forms on the orthogonal group O(1,5) of

signature (1+, 5−). Given a definite quaternion algebra B over Q, the orthogonal group

is attached to the indefinite quadratic space of rank 6 with the anisotropic part defined
by the reduced norm of B. Our construction can be viewed as a generalization of the
previous work by the first two authors joint with Masanori Muto to the case of any

definite quaternion algebras, for which we note that the work just mentioned takes up
the case where the discriminant of B is two. Unlike the previous work the method of the

construction is to consider the theta lifting from Maass cusp forms to O(1, 5), following
the formulation by Borcherds. The cuspidal representations generated by our cusp forms

are studied in detail. We determine all local components of the cuspidal representations

and show that our cusp forms are CAP forms.
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1. Introduction

Since the discovery of counterexamples to the Ramanujan conjecture by Saito-

Kurokawa [20] and Howe-Piatetskii-Shapiro [11] et al. we have known that one

has to take into consideration the existence of cuspidal representations with a non-

tempered local component towards the classification of cuspidal representations. We

call such cusp forms non-tempered. The representation theoretic study of [20] and
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[11] by Piatetskii Shapiro [27] leads to the notion of CAP representations, namely

cuspidal representations nearly equivalent to irreducible constituents of parabolic

inductions (see Definition 8.5). There have been active representation theoretic stud-

ies on CAP representation (cf. Soudry [37], Gelbart-Rogawski [7], Rallis-Schiffmann

[31], Ginzburg [8], Ginzburg-Rallis-Soudry [10], Ginzburg-Jiang-Soudry [9], et al).

The CAP representations are expected to exhaust a large class of non-tempered

cusp forms.

We are motivated by a non-holomorphic real analytic construction of non-

tempered cusp forms. Our study began with [23], which provided a non-tempered

cusp form on GL2(B) for a division quaternion algebra B over Q with discriminant

2. This was inspired by the paper [28] of the second named author, whose tool is the

converse theorem by Maass [22]. We have also constructed non-tempered cusp forms

on the orthogonal group O(1, 8n+1) in [21] by Borcherds’ theta lifting (cf. [3]). Note

that there is an accidental isomorphism relating PGL2(B) with SO(1, 5) or O(1, 5)

as Q-algebraic groups (cf. Section 2.3), where SO(1, 5) and O(1, 5) are attached

to the quadratic form of signature (1+, 5−) whose anisotropic part is defined by

the reduced norm of B. Following the approach of [21] this paper constructs non-

tempered cusp forms on O(1, 5) for the case of any definite quaternion algebra B,

namely with no restriction on the discriminants of B. They turn out to satisfy the

CAP properties. The lifting constructions from smaller groups are typical ways to

find examples of non-tempered cusp forms. For references in this direction we cite

Oda [26], Rallis-Schiffmann [30], Ikeda [12,13], Ikeda-Yamana [14], Yamana [40,41]

and Kim-Yamauchi [18] et al.

Let us now describe the main results of the paper. Let dB be the discriminant

of a definite quaternion algebra B over Q. For a maximal order O of B, let O′

be the dual lattice of O with respect to the reduced trace of B. We denote by

QA0
(cf. Sections 2) the quadratic form attached to the reduced norm of B. Let Γ

be the stabilizer of the lattice O ⊕ Z2 in the Q-rational points of the orthogonal

group defined by QA = QA0
⊕
(
0 1

1 0

)
(cf. Sections 2). The space of modular forms

on the 5-dimensional hyperbolic space with respect to Γ (respectively the space of

Maass cusp forms of level dB) is denoted byM(Γ,
√
−1r) (respectively S(Γ0(dB), r))

and any F ∈ M(Γ,
√
−1r) has the Fourier expansion (see Section 2 for details on

notations)

F (n(x)ay) =
∑
β∈O′

A(β)y2K√
−1r(4π

√
QA0(β)y)e(

tβA0x). (1.1)

Our construction is given by a theta lift Ff from Maass cusp forms f of level dB ,

with Fourier coefficients A(β) explicitly described in terms of Fourier coefficients

c(m) of f .

To describe the formula for A(β), let us introduce the set of the primitive ele-

ments as follows:

O′
prim := {β ∈ O′ :

1

n
β ̸∈ O′ for all positive integers n > 1}.
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Write β ∈ O′ as

β =
∏
p|dB

pupnβ0, up ≥ 0, n > 0, gcd(n, dB) = 1 and β0 ∈ O′
prim.

Let qβ0
= qµβ0

be the denominator of the simple fraction for the reduced norm of

β0 (cf. Section 3.3), which is a divisor of dB . For p|dB , set

δp =

{
0 if p|qβ0

;

1 if p ∤ qβ0
.

Let us assume that the Maass cusp form f has the Atkin-Lehner eigenvalue ϵp at

p|dB and has the trivial central character. Define

A(β) :=
√
QA0

(β)
∑
p|dB

2up+δp∑
tp=0

∑
d|n

c
( −QA0(β)∏
p|dB

ptp−1d2
) ∏
p|dB

(−εp)
tp−1. (1.2)

Putting together the results obtained in Theorem 4.4, Proposition 4.5, Proposition

5.2, Theorem 6.2, Theorem 6.5 and Theorem 7.1 we have the following result.

Theorem 1.1. Let B be a definite quaternion division algebra with discriminant

dB, which is square-free by definition, and let O be any maximal order of B. Let

f ∈ S(Γ0(dB), r), be an Atkin-Lehner eigenfunction with eigenvalues ϵp for p|dB.
Let Ff be a function on the 5-dimensional hyperbolic space given by the Fourier

expansion (1.1) with coefficients A(β) given in (1.2). Then the following is true:

i) Ff is a non-zero, cusp form in M(Γ,
√
−1r) for all non zero f .

ii) Suppose further that f is a Hecke eigenform with eigenvalues λp for all

p ∤ dB. Then Ff is also an eigenfunction for the Hecke algebra Hp for all

primes p.

iii) For p ∤ dB, let µi, i = 1, 2, 3 be the Hecke eigenvalues for Ff corresponding

to the three generators C
(i)
3 , i = 1, 2, 3 of Hp. Then we have

µ1 = p2(λ2
p − 2) + pf2,1 = p2(λ2

p + p+ p−1)

µi = |R(i−1)
2 |

(
µ1 −

pi−1 − 1

pi − 1
f3,1

)
, (i = 2, 3)

See (6.3) and (6.4) for the definition of f2,1, f3,1 and |R(i−1)
2 |.

iv) Suppose that f is a newform. For p|dB, let µ be the Hecke eigenvalue of Ff

for the Hecke operator C
(1)
1 , which generates Hp. Then we have

µ = p3 + p2 − p+ 1.

By adelizing our explicit lifts in terms of their Fourier expansion we can develop

their Hecke theory to obtain the theorem above. This also enables us to understand

the cuspidal representations generated by the lifts explicitly.
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Theorem 1.2 (Theorem 8.4, Proposition 8.6, Proposition 8.7). Suppose

that the Maass cusp form f is a newform with the trivial central character, and

Hecke eigenvalues λp for primes p ∤ dB. Let π be the cuspidal representation of

O(1, 5)(A) generated by the lift Ff from f .

(1) The representation π is irreducible and decomposes into the restricted tensor

product π = ⊗′
v≤∞πv of irreducible admissible representations πv.

(2) For v = p < ∞, if p ∤ dB then πp is the spherical constituent of the unramified

principal series representation of O(1, 5)(Qp) ≃ O(3, 3)(Qp) with the Satake

parameter

diag


λp +

√
λ2
p − 4

2

2

, p, 1, 1, p−1,

λp +
√
λ2
p − 4

2

−2 .

(3) For v = p < ∞, if p | dB then πp is the spherical constituent of the spherical

representation I(χ) of O(1, 5)(Qp) induced from the unramified character χ of

the split torus of O(1, 5)(Qp) isomorphic to Q×
p with χ(p) = p.

(4) For every finite prime p, πp is non-tempered. Suppose that the Selberg conjecture

on the minimal Laplace eigenvalue holds for f . Then π∞ is tempered.

(5) The cuspidal representation is a CAP representation associated with some ex-

plicit parabolic induction of O(3, 3)(A).
(6) Let σ denote the cuspidal representation of GL2(A) generated by f . Let Π =

Ind
GL4(A)
P2,2(A)(|det |

−1/2
A σ×| det |1/2A σ), with the parabolic subgroup P2,2 of GL4 with

Levi part GL2 × GL2. By L(Ff , std, s) (respectively L(Π,∧, s)) we denote the

standard L-function for the lift Ff (respectively exterior square L-function of

Π). We have

L(Ff , std, s) = L(Π,∧, s) = L(sym2(f), s)ζ(s− 1)ζ(s)ζ(s+ 1),

Let us note that a priori, the lift Ff depends on the discriminant dB of the

quaternion algebra B, the Atkin-Lehner eigenform f ∈ S(Γ0(dB), r) and the maxi-

mal order O in B. The above theorem shows that the local components of the repre-

sentation π generated by Ff are in fact independent of the maximal order O and the

Atkin-Lehner eigenvalues of f . It is interesting that the explicit Fourier coefficients

A(β) clearly depend on the maximal order O and the Atkin-Lehner eigenvalues ϵp
for p|dB , while the local components of the cuspidal automorphic representation

do not. A multiplicity one theorem for O(1, 5) would imply that different maximal

orders would give lifts which are different vectors in the same cuspidal automorphic

representations. Such a multiplicity one theorem is not currently available but is

expected since we have the multiplicity one theorem by Badulescu and Renard [1]

for the group PGL2(B).

There are a few significant differences between the results and methods of this

paper as compared to our previous work in [21,23]. In [23], we restricted ourselves

to the case dB = 2. Here the discrete group Γ was generated by translations and
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an inversion. The Maass converse theorem [22] gives a criterion for modularity with

respect to such groups, and we used it to show that the proposed lift in [23] is a

modular form. A situation for which we know that the discrete subgroup Γ has such

generators is when O satisfies the Euclidean property with respect to the reduce

norm. Using [25] we can prove that this happens only when the discriminant dB
equals 2, 3 or 5. In this case, we have obtained the proof of modularity of our lift

using the Maass converse theorem, but we have not included it in this article since

we are interested in general Bs. Instead, to prove modularity, we have used the

more general method of Borcherds theta lifts as in [21].

In [21], we were constructing lifts to modular forms on O(1, 8n+1) starting from

Maass forms of full level. For the lifting in Theorem 1.1 above, we need to consider

Maass forms with square-free level dB . For the Borcherds theta lift method to work,

an initial step is to transition from scalar valued Maass forms with level dB to vector

valued modular forms with respect to the Weil representation of SL2(Z). We work

out the corresponding vector valued modular forms and obtain explicit formulas for

their Fourier coefficients. This is an active area of research, and the explicit formulas

for the Fourier coefficients in the square-free case might be of independent interest.

The explicit formula (1.2) for the Fourier coefficients A(β) in Proposition 4.5

needs subtle understanding of the structure of the discriminant form O′/O to deter-

mine which elements of O′ correspond to which cusps of Γ0(dB). Furthermore, we

remark that, in [21] and [23], we showed the non-vanishing of the lifts by reducing

the non-vanishing of A(β) to that of c(−M) for a suitable positive integer M . For

the proof we used the explicit formula for A(β) together with the surjectivity for

the norm map of some special lattice to the set of non-negative integers. However,

since the maximal order O is arbitrary and such surjectivity is not always true for

a general O, even the explicit nature of the formula for A(β) is not sufficient to

obtain non-vanishing. For the non-vanishing of the lift from Theorem 1.1, we could

perhaps use Bhargava’s 15 Theorem [2] to show that the norm map is surjective for

special cases of maximal orders. But for obtaining the theorem in full generality we

use another approach using a simple idea from linear algebra. This requires us to

first show that the map f → Ff takes Hecke eigenforms to Hecke eigenforms. We

then see the non-vanishing of A(1) of Ff for a non-zero Hecke eigenform f . For the

non-vanishing, it turns out to be enough to show that, when f runs over a Hecke

eigenbasis of S(Γ0(dB), r), the lifts Ff distinguish each other by their Hecke eigen-

values at just one prime p ∤ dB , which lead us to prove that the map f → Ff is a

linear injection from S(Γ0(dB), r). We should remark that there is a well known ap-

proach to the non-vanishing of theta lifts using the inner product formula initiated

by Rallis [29]. Our method is very different and elementary.

To obtain the Hecke theory, we use the work of Sugano [38]. The case of p ∤ dB
follows directly as in [21]. The Hecke theory for primes p|dB requires a detailed

analysis of the non-split group and makes use of the explicit formula of the Fourier

coefficients A(β).
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Let us explain the outline of the paper. In Section 2 we begin with the review

on the orthogonal groups over which we work. This section includes fundamental

facts on definite quaternion algebras and accidental isomorphims necessary for the

coming discussion. Section 3 is devoted to a detailed study on vector-valued modular

forms. This section includes an explicit description of vector-valued forms lifted from

Maass cusp forms with square-free levels, which is indispensable for deducing an

explicit formula for Fourier coefficients of our lifts. In Section 4 we formulate our

lifts as the theta lifts to O(1, 5) in the non-adelic setting and provide their explicit

formula for the Fourier coefficients. The lifts are proved to be cuspidal in Section 5.

To obtain the representation theoretic aspect of our lifts we adelize them and

discuss their Hecke theory in Section 6. In Section 7 we obtain the non-vanishing of

our lifts by virtue of the study on the Hecke theory. In Section 8 we have a detailed

understanding of the cuspidal representations generated by our lifts, all of whose

local components are determined explicitly. As a result our lifts are non-tempered

at every non-archimedean place while they are tempered at the archimedean place

under the assumption that the Selberg conjecture on the minimal Laplace eigenvalue

holds for Maass cusp forms f . The lifts are then proved to be CAP forms attached

to some explicitly given parabolic induction for the split orthogonal group O(3, 3).

Section 8 ends with an explicit formula for the global standard L-functions of the

lifts from Maass cusp forms, whose statement is given as Proposition 8.7. The

definition follows Sugano [38, Section 7 (7.6)]. Proposition 8.7 also shows that our

global standard L-function coincides with the exterior square L-function for some

parabolic induction of GL4.

2. Preliminaries

In this section, we give the definitions of orthogonal groups, modular forms and

quaternion algebras. We also give details on certain accidental isomorphisms.

2.1. Orthogonal groups and modular forms

Let A0 ∈ M4(Q) be a positive definite symmetric matrix, and put A =

 1

−A0

1

.
By G and H we denote the Q-algebraic groups defined by

G(Q) = {g ∈ GL6(Q) | tgAg = A}, H(Q) = {h ∈ GL4(Q) | thA0h = A0}

respectively. Both G and H are referred to as orthogonal groups. We introduce the

standard proper Q parabolic subgroup P of G defined by the Levi decomposition
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P = NL with

N (Q) =

n(x) =

1 txA0
1
2
txA0x

14 x

1

 ∣∣∣∣∣∣ x ∈ Q4

 ,

L(Q) =

aα =

α

h

α−1

 ∣∣∣∣∣∣ α ∈ Q×, h ∈ H(Q)

 .

Assume that L0 is a maximal even integral lattice in Q4 with respect to A0. We

put

L :=


x

y

z

 ∣∣∣∣∣∣ x, z ∈ Z, y ∈ L0

 = L0 ⊕ Z2.

This is a maximal lattice with respect to A. We let Γ := {γ ∈ G(Q) | γL = L}.
Let A be the adele ring of Q and Af be the set of finite adeles in

A. We consider the adelizations of the Q-algebraic groups above, denoted by

G(A), H(A), P(A), N (A) and so on. Let Lp := L ⊗ Zp and L0,p := L0 ⊗ Zp

and we put Kf :=
∏

p<∞ Kp and Uf :=
∏

p<∞ Up with

Kp := {k ∈ G(Qp) | kLp = Lp}, Up := {u ∈ H(Qp) | uL0,p = L0,p}

for each finite prime p < ∞. Let K∞ be the maximal compact subgroup of G(R)
given by g ∈ G(R)

∣∣∣∣∣∣tg
1

A0

1

 g =

1

A0

1

 .

With A∞ :=

ay =

y

14
y−1

 ∣∣∣∣∣∣ y ∈ R+

 the Iwasawa decomposition G(R) =

N (R)A∞K∞ gives us the 5-dimensional hyperbolic space H5 as follows.

R4 × R+ ∋ (x, y) 7→ n(x)ay ∈ G(R)/K∞.

Definition 2.1. For r ∈ C we denote by M(Γ, r) the space of smooth functions F

on G(R) satisfying the following conditions:

i) Ω ·F =
1

8

(
r2 − 4

)
F , where Ω is the Casimir operator defined in [21, (2.3)],

ii) for any (γ, g, k) ∈ Γ× G(R)×K∞, we have F (γgk) = F (g),

iii) F is of moderate growth.

As usual we say that F ∈ M(Γ, r) is a cusp form if it vanishes at all the cusps of Γ.
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From Proposition 2.3 of [21], we see that a cusp form F in M(Γ, r) has the

Fourier expansion

F (n(x)ay) =
∑

β∈L′
0\{0}

A(β)y2Kr(4π
√
QA0

(β)y)e(tβA0x), (2.1)

with the dual lattice L′
0 of L0. Here, QA0

is the quadratic form corresponding to

A0.

2.2. Quaternion algebras

We want to restrict to the case where the lattice L0 from the previous section

corresponds to maximal orders in division quaternion algebras. In this section, we

will provide the relevant information about quaternion algebras, maximal orders

and their duals. A good reference is the book [39] by Jon Voight. Let B be a

definite division quaternion algebra over Q, given by Q + Qi + Qj + Qk, with

i2 = a, j2 = b, ij = −ji = k. Let us denote the standard involution on B by α 7→ ᾱ.

Let the trace and norm be defined by tr(α) = α+ ᾱ and Nrd(α) = αᾱ. Assume that

B has discriminant dB = N . Hence, N is a square-free integer with an odd number

of prime factors.

Let O be any maximal order in B. Let A0 be the gram matrix of O with respect

to some basis, so that O ≃ (Z4, A0). Let QA0 be the quadratic form given by

QA0
(x) = 1

2
txA0x for x ∈ Z4, and BA0

be the corresponding bilinear form. Note

that if α, β ∈ O get mapped to x, y ∈ Z4, then Nrd(α) = QA0
(x) and tr(αβ̄) =

BA0
(x, y). Let

L = {

aα
b

 : a, b ∈ Z, α ∈ O}.

Then L ≃ (Z6, A), with A =

 1

−A0

1

. Then QA(a, x, b) = ab − QA0
(x). Hence,

the signature of L is (1, 5). The bilinear form BA on L is given by

BA(x, x) = 2QA(x),

and

BA(x, y) =
1

2
(BA(x+ y, x+ y)−BA(x, x)−BA(y, y)) =

txAy

for x, y ∈ L. We will be considering the orthogonal groups G and H with respect to

the above matrices A and A0.

Define the dual of O by

O′ := {α ∈ B(Q) : tr(αO) ⊂ Z}.

Let us collect some facts about O and O′.
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i) Since O is maximal, we can see that O = {α ∈ O′ : Nrd(α) ∈ Z}.
ii) Let the discriminant disc(O) be as in [39, (15.1.2)]. We have disc(O) = N2,

since O is a maximal order [39, Theorem 15.5.5]. We also have [39, Lemma

15.6.17]

disc(O) = [O′ : O] = N2.

iii) Define

(O′)−1 := {α ∈ B(Q) : O′αO′ ⊂ O′}.

By [39, Proposition 16.5.8], we have (O′)−1O′ = O. Further, we also have

[39, Equation 16.8.4]

Nrd((O′)−1) = ideal generated by Nrd(α) for all α ∈ (O′)−1 = NZ.

This gives us

Nrd(O′) =
1

N
Z.

iv) For a prime number p, let Op = O ⊗ Zp and O′
p = O′ ⊗ Zp. It is known

that Op is a maximal order in Bp = B⊗Qp. For p ∤ N , Bp is isomorphic to

M2(Qp). Up to conjugation, there is a unique maximal order in Bp given

by M2(Zp), which is its own dual.

v) For p|N , Bp is a division algebra. From [36, Theorem 5.13], we have the

following information on the local maximal order and its dual.

• We have a unique maximal order Op in Bp given by {α ∈ Bp :

Nrd(α) ∈ Zp}.
• Let P := {α ∈ Bp : Nrd(α) ∈ pZp}. Then we have

Pm = {α ∈ Bp : Nrd(α) ∈ pmZp}

for m ∈ Z, pOp = P2, and O′
p = P−1.

• Let Kp ⊂ Bp be the unique non-trivial unramified extension of Qp.

We have

Kp =


Q2(

√
5) if p = 2;

Qp(
√
−1) if p ≡ 3, 7 (mod 8);

Qp(
√
2) if p ≡ 5 (mod 8);

Qp(
√
q) if p ≡ 1 (mod 8), q ≡ 3 (mod 4),

(
p
q

)
= −1.

Let OKp
be the ring of integers of Kp. Then there exists wp ∈ Bp

such that w2
p = p and Bp = Kp + wpKp, Op = OKp + wpOKp and

P = wpOp. Hence, O′
p = w−1

p Op = OKp
+ w−1

p OKp
.

• We have

O′
p/Op ≃ w−1

p OKp
/OKp

≃ ⟨w−1
p ⟩ × ⟨uw−1

p ⟩ ≃ Z/pZ× Z/pZ,
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where

u =



√
5 if p = 2;

√
−1 if p ≡ 3 (mod 4);

√
2 if p ≡ 5 (mod 8);

√
q if p ≡ 1 (mod 8).

2.3. Accidental isomorphisms

For a quaternion algebra E over Q with the reduced norm NE we view (E,NE)

as a rank 4 quadratic space over Q. This gives rise to the rank 6 quadratic space

VE := (E,NE)⊕H with the hyperbolic space H. For the subsequent argument we

will need the two well-known accidental isomorphisms

E× × E×/{(z, z) | z ∈ GL1} ≃ GSO(E,NE),

GL2(E)×GL1/{(z · 14, z−2) | z ∈ GL1} ≃ GSO(VE)

as Q-algebraic groups (cf. [5, Section 3]).

Let E := M2 be the matrix algebra of degree two over Q. The group on the right

hand side of the first isomorphism is the similitude group defined by the determinant

form of M2. We denote this by GSO(2, 2) in view of the signature of the quadratic

space at the archimedean place. The isomorphism is induced by

GL2 ×GL2 ∋ (h1, h2) 7→ M2 ∋ X 7→ h1Xh−1
2 ∈ M2.

Let ι be the main involution of M2. This induces the outer automorphism

GL2 ×GL2 ∋ (h1, h2) 7→ (ι(h1)
−1, ι(h2)

−1) ∈ GL2 ×GL2.

We denote this by t. With this t we have an isomorphism

GO(2, 2) ≃ GSO(2, 2)⋊ ⟨t⟩.

Regarding the second isomorphism the similitude group on the right hand side is

defined by the quadratic form ab−NE(X) defined on the Q-vector space

VE :=

{(
a x

ι(x) b

)
| a, b ∈ Q, x ∈ M2

}
.

Since the signature of this quadratic space is (3+, 3−) this group can be denoted

by GSO(3, 3). The isomorphism is given by

GL4 ×GL1 ∋ (g, z) 7→ VE ∋ X 7→ z · gXtι(g) ∈ VE ,

where we put ι(g) :=

(
ι(x) ι(y)

ι(z) ι(w)

)
for g =

(
x y

z w

)
with x, y, z, w ∈ M2.

Of course, we are interested in the case of E = B. For this case the similitude

groups can be denoted by GSO(4) and GSO(1, 5) for the first and second isomor-

phisms respectively.
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3. Vector valued modular form

In this section, we will start with a weight 0 Maass form for Γ0(N) and construct a

weight (0, 0) vector-valued modular form for the Weil representation of SL2(Z) on
a group algebra of a discriminant form. The main reference for this section is [34].

3.1. The discriminant form

As in the previous section, let B be a definite quaternion algebra over Q with

discriminant dB = N , a square-free integer. Let O be any maximal order of B with

O ≃ (Z4, A0). Let QA0 , L and A be as in Section 2.2.

Let O′ and L′ be the dual of O and L respectively with respect to bilinear forms

BA0
and BA. We have described the dual O′ in the previous section. We have

L′ = {

aα
b

 : a, b ∈ Z, α ∈ O′}.

Define the discriminant form D by D = L′/L. From the description of L′ above,

we have D = L′/L = O′/O. This D inherits the quadratic form QD and bilinear

form BD (with values in Q/Z) from those of O′ considered modulo 1. The level of

D is the smallest positive integer n such that nQD(µ) ≡ 0 (mod 1) for all µ ∈ D.

Since Nrd(O′) = 1
NZ, we see that the level of D is N . Every discriminant form is an

orthogonal direct sum of basic discriminant forms, which are described in Section

3 of [34]. The basic discriminant forms all correspond to the prime divisors of N .

Let us write D = ⊕p|NDp, where by Section 2.2, we have

Dp = ⟨w−1
p ⟩ × ⟨uw−1

p ⟩.

We have QD(w−1
p ) = −1/p and QD(uw−1

p ) = u2/p. When p = 2, we see that

QD(w−1
p ) = QD(uw−1

p ) = BD(w−1
p , uw−1

p ) = 1/2. Hence, in the notation of Section

3 of [34], we have D2 = 2−2
II .

Next, suppose p is an odd prime. Since QD(w−1
p ) = −1/p, the basic discriminant

form corresponding to ⟨w−1
p ⟩ is pϵ, where ϵ =

(
−2
p

)
. On the other hand

QD(uw−1
p ) =


−1/p if p ≡ 3 (mod 4);

2/p if p ≡ 5 (mod 8);

q/p if p ≡ 1 (mod 8).

If QD(uw−1
p ) = a/p, then ⟨uw−1

p ⟩ corresponds to the discriminant form pϵ
′
, where

ϵ′ =
(

2a
p

)
. Hence, by Section 3 of [34], we have

Dp =


p+1 × p+1 = p+2 if p ≡ 3 (mod 8);

p−1 × p−1 = p+2 if p ≡ 7 (mod 8);

p+1 × p−1 = p−2 if p ≡ 1, 5 (mod 8).

(3.1)

We have the following relevant information about D.



November 22, 2022 5:59 lifting-squarefree-O(1,5)-final

12 An explicit lifting construction for O(1, 5)

i) The level of D is N and |D| = N2.

ii) The signature of D is sgn(D) = 1− 5 (mod 8) = 4.

iii) D = ⊕p|NDp, where Dp = {µ ∈ D : pµ = 0}.
iv) The oddity of D is 4 if N is even, and is 0 if N is odd.

3.2. Weil representation

The group algebra C[D] is a C-vector space generated by the formal basis vectors

{eµ : µ ∈ D} with product defined by eµeµ′ = eµ+µ′ . The inner product on C[D]

(anti-linear in the second argument) is defined by ⟨eµ, eµ′⟩ = δµ,µ′ . Hereafter we

will often use the notation

e(x) := exp(2π
√
−1x)

for x ∈ R. We will now define a representation ρD of SL2(Z) on C[D] by specifying

it on the generators of SL2(Z) given by T = [ 1 1
1 ] and S =

[ −1
1

]
.

ρD(T )eµ = e(QD(µ))eµ,

ρD(S)eµ =
e(−sgn(D)/8)√

|D|

∑
µ′∈D

e(−BD(µ, µ′))eµ′ = − 1

N

∑
µ′∈D

e(−BD(µ, µ′))eµ′ .

This action extends to a unitary representation ρD of SL2(Z) on C[D] called the

Weil representation of D. The restriction of ρD to the congruence subgroup Γ0(N)

is given in the next lemma.

Lemma 3.1. Let M =
[
a b
c d

]
∈ Γ0(N) and µ ∈ D. Then

ρD(M)eµ = e(bdQD(µ))edµ.

In particular, we have ρD(M)e0 = e0 for all M ∈ Γ0(N).

Proof. From equation (4.1) of [34] we get, for M =
[
a b
c d

]
∈ Γ0(N) and µ ∈ D,

ρD(M)eµ = χD(a)e(bdQD(µ))edµ, where χD(a) =
( a

|D|

)
e((a− 1) · oddity(D)/8).

Note that |D| = N2 and oddity(D) = 4 if N is even and 0 if N is odd. Hence, for

all D, we have that χD is the trivial character. This gives the lemma.

3.3. Scalar to vector valued modular form

To construct a vector valued modular form for SL2(Z) with values in C[D], one has

to start with a scalar valued modular form of level divisible by the level of D and

nebentypus character χD. In our case, the level of D is N and the character χD

is trivial. Hence, we let S(Γ0(N), r) be the space of Maass cusp form of weight 0

with respect to Γ0(N) with Laplace eigenvalue (r2+1)/4. According to the Selberg

conjecture on the minimal Laplace eigenvalue for Maass cusp forms, r should be
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real (cf. [15, Section 11.3 Conjecture]). The Fourier expansion of f ∈ S(Γ0(N), r)

is given by

f(u+ iv) =
∑
n ̸=0

c(n)W
0,

√
−1r
2

(4π|n|v)e(nu).

for h := {u+ iv ∈ C : v > 0}. Define LD(f) : h → C[D] by

LD(f) =
∑

M∈Γ0(N)\SL2(Z)

f |MρD(M)−1e0, (3.2)

where (f |M)(τ) = f(M · τ) := f((aτ + b)/(cτ + d)) for M =
[
a b
c d

]
∈ SL2(R).

Proposition 3.2. Let f ∈ S(Γ0(N), r). The function LD(f) is well-defined and

satisfies

LD(f)|γ = ρD(γ)LD(f),

for all γ ∈ SL2(Z).

Proof. The well-definedness of LD(f) follows from the Γ0(N)-invariance of f and

Lemma 3.1. The automorphy condition follows from a simple change of variable.

Let us remark here that if H is an isotropic subgroup of D, then the e0 term

in the definition of LD(f) can be replaced by a sum over H. In our case, the only

isotropic subgroup of D is the trivial one.

In the remainder of the section, we will obtain a formula for the Fourier expan-

sion of LD(f). From page 660 of [33], we have

LD(f)(τ) =
∑
c|N

∑
µ∈DN

c

ξc

√
|Dc|√
|D|

N

c
gN

c ,j
µ,N

c

(τ)eµ. (3.3)

Let us explain the terms appearing in the formula above.

i) For any integer t, set Dt := {µ ∈ D : tµ = 0}. In our case, for every t|N ,

we have Dt = ⊕p|tDp. Hence, |Dt| = t2 for t|N .

ii) We have

ξc :=
( −c

|DN
c
|

)∏
p|Nc

γp(D),

with

γp(p
±2) = e(−p-excess(p±2)/8) if p is odd,

γ2(2
±2
II ) = e(oddity(2±2

II )/8).

We have p-excess(p±2) = 2(p− 1)+ k (mod 8) where k = 4 if the sign is −
and k = 0 if the sign is +. By (3.1), we have γp(Dp) = −1 for all primes p.

Hence

ξc =
∏
p|Nc

(−1).
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iii) Finally, let us describe the functions gN
c ,j . For every c|N , choose Mc =[

a b
c d

]
∈ SL2(Z) such that d ≡ 1 (mod c) and d ≡ 0 (mod N/c). As in page

658 of [33], we have, for 0 ≤ j ≤ N/c,

gN
c ,j(τ) =

1

N/c

∑
k mod N

c

e
(−jk

N/c

)(
f |McT

k
)
(τ).

The integer jµ,N/c is defined by (jµ,N/c)/(N/c) ≡ −QD(µ) (mod 1).

Putting all this together, we see that (3.3) now gives us

LD(f)(τ) =
∑
c|N

∏
p|Nc

(−1)
1

N/c

∑
k mod N

c

(
f |McT

k
)
(τ)

∑
µ∈DN

c

e(kQD(µ))eµ. (3.4)

To simplify this further, we will assume that f is an eigenfunction of all the Atkin-

Lehner operators. For every c|N , the Atkin-Lehner operator corresponds to the

action on f by the matrix WN
c
∈ M2(Z) given by

WN
c
=
[

N
c x y

Nw N
c x

]
with det(WN

c
) =

N

c
.

Note that W 2
N
c

∈ Z(Q)Γ0(N) with Z(Q) := {z · 12 | z ∈ Q×}. Now set Ŵc :=

WN
c

[ c
N

1

]
∈ SL2(Z).

Since N is square-free, the cusps of Γ0(N) are given by 1/c where c runs over

all divisors of N . The cusp 1/N corresponds to infinity. Given a matrix M =[
a′ b′

c′ d′

]
∈ SL2(Z), it is well known that M⟨∞⟩ contains the representative 1/c,

where c = gcd(c′, N). Hence, we have Mc⟨∞⟩ = Ŵc⟨∞⟩, which implies that there

is a γc ∈ Γ0(N) such that Mc = γcŴc.

Proposition 3.3. Let f ∈ S(Γ0(N), r) be a Maass cusp form of weight 0 with re-

spect to Γ0(N) with Laplace eigenvalue (r2+1)/4. Assume that f is an eigenfunction

of the Atkin-Lehner operators and let f |WN
c
= εN

c
f . Then, we have

LD(f)(τ) =
∑
c|N

εN
c

∏
p|Nc

(−1)
∑

a mod N
c

∑
n ̸=0

n+a≡0 mod N
c

(
c(n)W

0,
√

−1r
2

(4π|n|v c

N
)e(nu

c

N
)

×
∑

µ∈DN
c

QD(µ)≡ ac
N mod 1

eµ.
)

Proof. Since Mc = γcŴc, with γc ∈ Γ0(N), we have(
f |McT

k
)
(τ) =

(
f |ŴcT

k
)
(τ) =

(
f |WN

c

[ c
N

1

]
T k
)
(τ)

= εN
c

(
f |
[

c
N

kc
N
1

])
(τ) = εN

c
f(

τc

N
+

kc

N
)

= εN
c

∑
n ̸=0

c(n)W
0,

√
−1r
2

(4π|n|v c

N
)e(nu

c

N
)e(nk

c

N
).
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Note that we have∑
k mod N

c

∑
µ∈DN

c

e(nk
c

N
)e(kQD(µ))eµ =

∑
a mod N

c

∑
µ∈DN

c

QD(µ)=ac/N

∑
k mod N

c

e(
kc

N
(n+ a))eµ.

Here, we have used that N
c QD(DN

c
) ⊂ Z. We have

∑
k mod N

c

e(
kc

N
(n+ a)) =

{
N
c if n+ a ≡ 0 (mod N

c );

0 otherwise.

Substituting these in (3.4) gives us the formula in the statement of the proposition.

We want to rewrite the formula for LD(f)(τ) in Proposition 3.3 in the form∑
µ∈D fµ(τ)eµ. For this, let us first associate to every µ ∈ D an integer qµ|N as

follows. Since NQD(µ) ∈ Z, write QD(µ) = b/N = a/qµ, where gcd(a, qµ) = 1.

Observe that µ ∈ DN
c
for every c satisfying qµ|Nc |N . Hence, we have

LD(f)(τ) =
∑
µ∈D

(∑
c| N

qµ

εN
c

∏
p|Nc

(−1)

×
∑
n ̸=0

nc
N ≡−QD(µ) mod 1

c(n)W
0,

√
−1r
2

(4π|n|v c

N
)e(nu

c

N
)
)
eµ. (3.5)

Observe that the coefficient fµ(τ) of eµ above depends only on QD(µ). Hence, for

any c ∈ G(Q), we have

LcD(f) =
∑
µ∈cD

f ′
µ(τ)eµ with f ′

µ = fc−1µ. (3.6)

4. Theta lifts

In this section, we will construct the theta lift of f ∈ S(Γ0(N), r), N square-free,

to an automorphic form on 5-dimensional hyperbolic space as in [3]. Also see [21].

4.1. Real hyperbolic space as a Grassmanian manifold

We will follow the construction of the theta lift in Section 3 of [21]. We recall from

Section 2 that if g ∈ G(R), then we can write

g = n(x)ayk, where n(x) =

1 txA0
1
2
txA0x

14 x

1

 , x ∈ R4, ay =

y 14
y−1

 ,

for y ∈ R+, k ∈ K∞ where K∞ is the maximal compact subgroup of G(R) (cf. Sec-
tion 2.1) and that

R4 × R+ ∋ (x, y) 7→ n(x)ay ∈ G(R)/K∞
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gives the 5-dimensional hyperbolic space H5. Let V5 := (R6, QA) and let D be

the Grassmanian of positive oriented lines in the quadratic space V5. Note that

V5 = L⊗R, where L was the lattice defined in Section 2.2. We will identify H5 with

a connected component of D as follows.

H5 ∋ (x, y) 7→ ν(x, y) :=
1√
2
t(y + y−1QA0

(x),−y−1x, y−1) ∈ V5

satisfying BA(ν(x, y), ν(x, y)) = 1. It generates the positive, oriented line R ·ν(x, y),
which is an element in D. In fact, we see that D+ := {R ·ν(x, y) | (x, y) ∈ H5} is one

of the two connected components of D. We now note that the quadratic space V5 is

isometric to R1,5, where R1,5 denotes the real vector space R6 with the quadratic

form

Q1,5(x1, x2, · · · , x6) :=
1

2

x2
1 −

6∑
j=2

x2
j

 .

We slightly abuse the notation by using ν to represent the line generated by ν(x, y).

Every line ν ∈ D+ induces an isometry

ιν : V5 → R · ν ⊕ (ν⊥, QA0
|ν⊥) ≃ R1,5

λ 7→ (ι+ν (λ), ι
−
ν (λ)),

where

ι+ν (λ) := BA(λ, ν)ν, ι−ν (λ) := λ− ι+ν (λ) ∈ ν⊥

are the components of λ. Let us remark here that, if we fix (x, y) ∈ H5, then we

get a corresponding isometry of V5 into R1,5 where the one dimensional positive

definite subspace is the line generated by ν(x, y).

Note that ι+γ·ν(γ · λ) = γ · ι+ν (λ) for any γ ∈ G(R) and λ ∈ V5. Next, we collect

some facts about the distinguished elements

z := t(1, 04, 0), z′ := t(0, 04, 1),

µ0 := −z′ +
zν+

2BA(zν+ , zν+)
+

zν−

2BA(zν− , zν−)

and their properties. These will be useful later in the Fourier expansion of the theta

lift.

Lemma 4.1.

i) We have BA(z, z) = BA(z
′, z′) = 0 and BA(z, z

′) = 1.

ii) Let z = (zν+ , zν−) where zν+ = ι+ν (z) and zν− = ι−ν (z). Then

zν+ = BA(z, ν)ν =
1√
2y

ν, zν− = z − zν+ ,

BA(zν+ , zν+) =
1

2y2
, BA(zν− , zν−) =

−1

2y2
.
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iii) We have µ0 = −z′ + y2(2zν+ − z).

iv) Let λ ∈ O′ and consider it as an element of L′. Then

BA(λ, µ0) =
tλAµ0.

Proof. Part i) follows from the definition of BA. For part ii) use BA(ν, ν) = 1 and

part i). Part iii) follows from part ii). For part iv), use BA(λ, z) = BA(λ, z
′) = 0.

4.2. The theta kernel

Let w+ (respectively w−) be the orthogonal complement of the line generated by

zν+ (respectively zν−) in ι+ν (V5) (respectively ι−ν (V5)). For λ ∈ V5, let λw+ and

λw− be the projection of λ to w+ and w− respectively. We define the linear map

w : V5 → R1,5 by w(λ) = (λw+ , λw−), so that w is an isomorphism from w+ and w−

to their images and w vanishes on zν+ and zν− . For our special case, w+ is trivial,

the image of w is 4-dimensional, and the first coordinate of w(λ) is 0.

If p is a polynomial on R1,5, we say that p has homogeneous degree (m+,m−) if it

is homogeneous of degree m+ in the first variable and homogeneous of degree m− in

the last 5 variables. For h+, h− integers satisfying 0 ≤ h+ ≤ m+ and 0 ≤ h− ≤ m−

define polynomials pw,h+,h− on w(V5) of homogeneous degree (m+ − h+,m− − h−)

by

p(ιν(λ)) =
∑

h+,h−

BA(λ, zν+)h
+

BA(λ, zν−)h
−
pw,h+,h−(w(λ)). (4.1)

Let p : R6 → R be the polynomial given by p(x1, · · · , x6) = −2−2x2
1. We get a

polynomial on V5 defined by p ◦ ιν given by the formula

p(ιν(λ)) = −2−2BA(λ, ν)
2 = −2−1y2BA(λ, zν+)2.

By (4.1), we have

pw,h+,h− =

{
−2−1y2 if (h+, h−) = (2, 0);

0 otherwise.
(4.2)

Note that the polynomial pw,h+,h− is a constant in this case.

Let ∆ be the Laplacian on R1,5. For τ ∈ h, (x, y) ∈ H5 and µ ∈ D = L′/L,

define

θLµ (τ, ν(x, y), p) :=
∑

λ∈L+µ

(
exp(

−∆

8πv
)(p)

)
(ιν(λ))

× exp(2π
√
−1
(
QA(ι

+
ν (λ))τ +QA(ι

−
ν (λ))τ̄

)
),

ΘL(τ, ν(x, y), p) :=
∑
µ∈D

eµθ
L
µ (τ, ν(x, y), p).

Proposition 4.2. For
[
a b
c d

]
∈ SL2(Z), we have

ΘL(
aτ + b

cτ + d
, ν(x, y), p) = |cτ + d|5ρD(

[
a b
c d

]
)ΘL(τ, ν(x, y), p).
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Proof. The transformation formula in the τ variable follows from Theorem 4.1 of

[3] by noticing that b+ = 1, b− = 5, m+ = 2, and m− = 0.

4.3. The theta lift

Let f ∈ S(Γ0(N), r), N square-free, be an Atkin-Lehner eigenform with eigenvalues

εc for all c|N . Let LD(f) be the C[D] valued modular form as defined in (3.2). Let

ΘL(τ, ν(x, y), p) be the theta function defined in the previous section. Define

ΦL(ν(x, y), p, f) :=

∫
SL2(Z)\h

(LD(f))(τ)ΘL(τ, ν(x, y), p)v
5
2
dudv

v2
.

Here, complex conjugation on C[D] is given by eµ := e−µ. In the product of ΘL

and LD(f), we are taking the inner product in C[D] to get a C-valued function.

By Propositions 3.2 and 4.2, we see that the integrand is indeed invariant under

SL2(Z).

Lemma 4.3. Let γ ∈ Γ = {γ ∈ G(Q) : γL = L}. Then

ΦL(γν(x, y), p, f) = ΦL(ν(x, y), p, f).

Proof. Using the definition of L′, it is easy to see that Γ acts on L′ and hence

on D as well. Every element of Γ fixes 0 and, for 0 ̸= µ ∈ D with γ ∈ Γ,

we have QD(µ) = QD(γ−1µ). Let us observe that p(ιν(λ)) = −2−2BA(λ, ν)
2

and BA(λ, γν) = BA(γ
−1λ, ν). Now, a change of variable gives us θLµ (τ, γν, p) =

θLγ−1µ(τ, ν, p). Hence

ΘL(τ, γν(x, y), p) =
∑
µ∈D

eµθ
L
γ−1µ(τ, ν(x, y), p).

From (3.5), we know that the eµ-component of LD(f) depends only on QD(µ). As

seen above, QD(µ) = QD(γ−1µ) for all µ ̸= 0 in D. Upon integration, we get the

result.

Let z⊥ be the orthogonal complement of the line z generates in V5. By part i)

of Lemma 4.1, we see that z ∈ z⊥. Let K := (L ∩ z⊥)/Zz. By the definition of BA,

we can see that the lattice K is isomorphic to O. Given LD(f) as above, we can

define a C[K ′/K]-valued function (LD(f))K which is a modular form for SL2(Z)
with respect to ρK′/K . In our case, since K = O, we have K ′/K = D and hence

(LD(f))K = LD(f). We want to show that the Fourier expansion of ΦL(ν(x, y), f)

is of the form (2.1). By Theorem 7.1 of [3], the Fourier expansion of ΦL(ν(x, y), f)

is given by
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ΦL(ν(x, y),f)

=
1

2
√
QA(zν+)

∑
h≥0

h!
(QA(zν+)

2π

)h
ΦK(w, pw,h,h, (LD(f))K)

+
1√

QA(zν+)

∑
h≥0

∑
h+,h−

h!
(−2QA(zν+ )

π

)h
(2i)h++h−

(
h+

h

)(
h−

h

)

×
∑
j

∑
λ∈K′

(−∆)j(p̄w,h+,h−)(w(λ))

(8π)jj!

×
∑
n>0

e(BA(nλ, µ0))n
h++h−−2h

∑
µ∈D

µ|
L∩z⊥=λ

e(nBA(µ, z
′))

×
∫
v>0

cµ,QA(λ)(v) exp(−
πn2

4vQA(zν+)
− 2πv(QA(λw+)−QA(λw−)))

× vh−h+−h−−j− 5
2 dv.

Here

v
5
2 (LD(f))(u+ iv) =

∑
µ∈D

eµ
∑
m∈Q

cµ,m(v)e(mu).

Also, µ0 is as defined in part iii) of Lemma 4.1. In addition, λw+ and λw− are defined

in the beginning of Section 4.2. Let us now apply this formula to our particular

situation.

i) We have K = O, hence K ′ = O′.

ii) By (4.2), we have

pw,h+,h− =

{
−2−1y2 if (h+, h−) = (2, 0);

0 otherwise.

Hence, the first sum is zero. In the second sum over h, h+, and h−, we only

have the case h = 0, h+ = 2, and h− = 0. Since pw,h+,h− is a constant

function, the sum over j vanishes for all j > 0. Hence, we only get j = 0.

iii) By Lemma 4.1, we have QA(zν+) = (4y2)−1 and BA(λ, µ0) =
tλAµ0.

iv) Since D = O′/O, we can see that, for µ ∈ D, we have BA(µ, z
′) ∈ Z. Hence,

e(nBA(µ, z
′)) = 1 for all µ ∈ D. Furthermore, for each λ, there is exactly

one µ ∈ D such that µ|L∩z⊥ = λ.

v) For λ ∈ O′, we have QA(λ) = −QA0
(λ).

vi) For λ ∈ O′, we have λw+ = 0 since w+ is the trivial space in our case. We

have QA(λw−) = −QA0
(λ).

vii) By (3.5), for µ ∈ D, λ ∈ O′, and v ∈ R>0, we have

cµ,QA(λ)(v) = cµ(λ)W0,
√

−1r
2

(4πQA0(λ)v)v
5
2 ,
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where

cµ(λ) =


0 if λ ̸∈ µ+O;∑
c| N

qµ

∏
p|Nc

(−εp)c(−QA0
(λ)Nc ) if λ ∈ µ+O. (4.3)

Let µλ ∈ D be such that λ ∈ µλ+O. Then we see that cµ(λ) is non-zero

only if µ = µλ.

viii) We have∫
v>0

v
5
2W

0,
√

−1r
2

(4π|QA0
(λ)|v) exp(−πn2y2

v
− 2πvQA0

(λ))v−2− 5
2 dv

=

∫
v>0

W
0,

√
−1r
2

(4π
|QA0(λ)|

v
) exp(−πn2y2v − 2πQA0(λ)

v
)dv by (v 7→ 1

v
)

=4

√
QA0

(λ)

ny
K√

−1r(4π
√
QA0(λ)ny).

We have used∫ ∞

0

exp(−pt− a

2t
)W

0,
√

−1r
2

(
a

t
)dt = 2

√
a

p
K√

−1r(2
√
ap)

(cf. [4, 4.22 (22)]) with a = 4πQA0
(λ) and p = πn2y2.

Putting this together, we see that the Fourier expansion is given by

2y(
−1

4
)
∑
λ∈O′

−y2

2

∑
n>0

e(ntλA0x)n
2cµλ

(λ)4

√
QA0

(λ)

ny
K√

−1r(4π
√

QA0
(λ)ny)

=
∑
λ∈O′

∑
n>0

n
√

QA0(λ)cµλ
(λ)y2K√

−1r(4π
√
QA0(λ)ny)e(n

tλA0x)

=
∑
β∈O′

√
QA0

(β)
( ∑

d>0
1
dβ∈O′

cµ β
d

(β
d

))
y2K√

−1r(4π
√
QA0

(β)y)e(tβA0x).

From Lemma 4.3 and the above Fourier expansion (compare to (2.1)), we get

Theorem 4.4. ΦL(ν(x, y), f) belongs to M(Γ,
√
−1r).

We will use the remaining section to obtain a formula for the Fourier coefficients

of ΦL(ν(x, y), f) in terms of the Fourier coefficients of f . For β ∈ O′, set

A(β) =
√
QA0

(β)
∑
d>0

1
dβ∈O′

cµ β
d

(β
d

)
. (4.4)

We will now obtain a formula for A(β) in terms of the Fourier coefficients c(n) of

f . Let us define the primitive elements of O′ by

O′
prim := {β ∈ O′ :

1

n
β ̸∈ O′ for all positive integers n > 1}.
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Proposition 4.5. Write β ∈ O′ as

β =
∏
p|N

pupnβ0, up ≥ 0, n > 0, gcd(n,N) = 1 and β0 ∈ O′
prim.

Let qβ0 = qµβ0
. For p|N , set

δp =

{
0 if p|qβ0 ;

1 if p ∤ qβ0
.

Then

A(β) =
√
QA0(β)

∑
p|N

2up+δp∑
tp=0

∑
d|n

c
( −QA0

(β)∏
p|N

ptp−1d2
)∏
p|N

(−εp)
tp−1. (4.5)

Proof. From (4.3) and (4.4), it is clear that we can take n = 1 above. Let S0 be

the set of primes dividing qβ0
and S′ be the subset of S0 with up = 0. For any set

of primes S, denote by NS the product of all primes in S. From (4.3) and (4.4), we

have

A(β) =
√
QA0

(β)

up∑
p|N
ap=0

cµβ/(
∏

p|N p
ap )

( β∏
p|N pap

)

=
√
QA0(β)

∑
S′⊂S⊂S0

up∑
p|(N/NS0

)
ap=0

up−1∑
p|(NS0

/NS)
ap=0

cµβ/(
∏

p|NS
p
up ∏

p|(N/NS) p
ap )

×
( β∏

p|NS
pup

∏
p|(N/NS) p

ap

)
.

We are essentially splitting up the sum according to which ap = up for p ∈ S0 so

that, for all the β′ appearing in the sum above, we have qβ′ = NS . Hence applying

(4.3), we have

A(β) =
√
QA0

(β)
∑

S′⊂S⊂S0

up∑
p|(N/NS0

)
ap=0

up−1∑
p|(NS0

/NS)
ap=0

∑
c|(N/NS)

×
∏
p|Nc

(−εp)c(−QA0(
β∏

p|NS
pup

∏
p|(N/NS) p

ap
)
N

c
).
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Here, if p|NS then we have p|(N/c) for all c|(N/NS). Hence, we have

A(β) =
√

QA0
(β)

∑
S′⊂S⊂S0

up∑
p|(N/NS0

)
ap=0

up−1∑
p|(NS0

/NS)
ap=0

∑
c|(N/NS)

∏
p|NS

(−εp)

×
∏

p| N
cNS

(−εp)c
( −QA0

(β)∏
p|NS

p2up−1
∏

p| N
cNS

p2ap−1
∏

p|c p
2ap

)

=
√

QA0
(β)

∑
S′⊂S⊂S0

up∑
p|(N/NS0

)
ap=0

up−1∑
p|(NS0

/NS)
ap=0

∑
c|(N/NS)

∏
p|NS

(−εp)

×
∏

p| N
cNS

(−εp)
2ap−1

∏
p|c

(−εp)
2apc

( −QA0
(β)∏

p|NS
p2up−1

∏
p| N

cNS

p2ap−1
∏

p|c p
2ap

)
.

Further, we can divide the set {c|(N/NS)} into a set of pairs (c, c′) such that cc′ =

N/NS . Note that for any prime p|(N/NS) and any pair (c, c′) as above, p divides

exactly one of N/c or N/c′. Also note, in the denominator in the last term above,

the possible exponents of p are as follows: if p|qβ0
, then the exponents vary from 0

to 2up−1, and if p ∤ qβ0
, then the exponents vary from 0 to 2up. In addition, a term

for −εp appears in the product if and only if the exponent of p in the denominator

is odd. Changing variable from ap to tp, and noting the definition of δp in the

statement of the proposition, we finally get the formula in (4.5).

5. The cuspidality of the theta lifts

We show the cuspidality of our theta lifts

ΦL(ν(x, y), p, f) :=

∫
SL2(Z)\h

LD(f)ΘL(τ, ν(x, y), p)v
5
2
dudv

v2
.

The first step is to understand the action of c ∈ G(Q) on ΦL(ν(x, y), p, f).

Lemma 5.1. For any c ∈ G(Q), we have

ΦL(cν(x, y), p, f) = Φc−1L(ν(x, y), p, f).

Proof. Recall that ιg·ν(g ·λ) = g · ιν(λ) for (g, λ, ν) ∈ G(R)×R6×D+, which yields

ι+g·ν(g · λ) = g · ι+ν (λ), ι−g·ν(g · λ) = g · ι−ν (λ).

In addition, we note that

p(ιg·ν(λ) = p(ιν(g
−1 · λ))
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for (g, λ) ∈ G(R)×R6. For (g, µ) ∈ G(R)×L′ we thereby have θLµ (τ, g · ν(x, y), p) =∑
λ∈µ+L

exp((
−∆

8πy
(p))(ιg·ν(λ))e(Q(ι+g·ν(λ))τ +Q(ι−g·ν(λ))τ̄)

=
∑

λ∈µ+L

exp((
−∆

8πy
(p))(ιν(g

−1 · λ))e(Q(g · ι+ν (g−1 · λ))τ +Q(g · ι−ν (g−1 · λ))τ̄)

=
∑

λ∈g−1·(µ+L)

exp((
−∆

8πy
(p))(ιν(λ))e(Q(ι+ν (λ))τ +Q(ι−ν (λ))τ̄)

=θg
−1L

g−1µ (τ, ·ν(x, y), p).

Writing LD(f) =
∑

µ∈D fD
µ eµ and using (3.6), we get

LD(f)ΘL(τ, cν, p) =
∑
µ∈D

fD
µ θc

−1L
−c−1µ(τ, ·ν(x, y), p)

=
∑
µ∈D

f c−1D
c−1µ θc

−1L
−c−1µ(τ, ·ν(x, y), p)

=
∑

µ∈c−1D

f c−1D
µ θc

−1L
−µ (τ, ·ν(x, y), p)

= Lc−1D(f)Θc−1L(τ, ν, p).

Here we put c−1D := c−1L′/c−1L, which is isomorphic to D. Upon integration, we

get the result of the lemma.

For any cusp c ∈ P(Q)\G(Q)/Γ, we see that QA(x) = QA(c
−1x) for all x ∈ Q6.

Hence, the lattice c−1L has the same associated quadratic form as L. There-

fore, the discriminant form c−1D = c−1L′/c−1L is isomorphic to D = L′/L as

quadratic modules and hence Proposition 4.5 applies to the Fourier expansion of

Φc−1L(ν(x, y), p, f). In particular, Φc−1L(ν(x, y), p, f) has no constant term and

therefore we get the following.

Proposition 5.2. For each representative c of the Γ-cusps, ΦL(cν(x, y), p, f) has

no constant term. Namely, our lifts ΦL(ν(x, y), p, f) are cuspidal.

6. Hecke Theory

6.1. Adelization of automorphic forms

To study the action of the Hecke operators on our cusp forms constructed by the

lift, we need the adelic as well as non-adelic treatment of automorphic forms.

For h ∈ H(A), we have the decomposition h = au−1 with (a, u) ∈ GL4(Q) ×
(Πp<∞SL4(Zp) × SL4(R)). Let Oh := (Πp<∞hpZ4

p × R4) ∩ Q4 for h = (hv)v≤∞ ∈
H(A). Then, we have Oh = aO (c.f. [21, Section 3.3]). The dual lattice O′

h is

then equal to a−1O′. Here note that we regard O and O′ as Z4 equipped with the

quadratic forms induced by the reduced norm.
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To obtain an adelic Fourier expansion, let f ∈ S(Γ0(N), r) be a Maass cusp

form with the Fourier expansion f(z) =
∑

n ̸=0 c(n)W0,
√

−1r
2

(4π|n|y)e(x). Let Λ be

the standard additive character of A/Q. We introduce the following Fourier series

Ff (n(x)aykg) :=
∑

λ∈Q4\{0}

Ff,λ(n(x)aykg) ∀(x, y, k, g) ∈ A4 × R×
+ ×K∞ × G(Af )

(6.1)

with

Ff,λ(n(x)aykg) := Aλ(g)y
2K√

−1r(4π|λ|Ay)Λ(
tλAx),

where Aλ(g) is defined by the following conditions:

Aλ

1

h

1

 :=


√
QA0(λ)

∑
p|N

2up+δp∑
tp=0

∑
d|n

c
( −QA0

(λ)∏
p|N

ptp−1d2

) ∏
p|N

(−εp)
tp−1 (λ ∈ O′

h)

0 (λ ∈ Q4 \ O′
h)

Aλ

s

h

s−1

 := ||s||2AA||s||−1
A λ

1

h

1


Aλ(n(x)gk) := Λ(tλAx)Aλ(g) ∀(x, g, k) ∈ A4

f × G(Af )×Kf .

Here

1. up, δp and n are as defined in Proposition 4.5 for β = h−1λ.

2. (s, h) ∈ A×
f ×H(Af ) and ||s||A denotes the idele norm of s.

Note, the definitions of up, δp and n do not depend on the decomposition

h = au−1, which was essentially pointed out in the proof of [21, Lemma 3.2]. The

following lemma is settled by the same reasoning as [21, Lemma 3.2].

For r ∈ C, let M(G(A), r) denote the space of smooth functions F on G(A)
satisfying the following conditions:

1. Ω · F = 1
8 (r

2 − 4)F , where Ω is the Casimir operator defined in [21].

2. For any (γ, g, k) = G(Q)× G(A)×K, we have F (γgk) = F (g).

3. F is of moderate growth.

Note that F ∈ M(G(A), r) has the Fourier expansion

F (g) =
∑
λ∈Q4

Fλ(q), Fλ(g) :=

∫
A4/Q4

F (n(x)g)Λ(tλAx)dx,

where dx is the invariant measure normalized so that the volume of A4/Q4 is one.

The adelic function F is called a cusp form if F0 ≡ 0 in the Fourier expansion.

Proposition 6.1. The adelic function Ff is a cusp form belonging to

M(G(A),
√
−1r).

Proof. By the argument similar to [21, Theorem 3.3] this follows from the Fourier

expansion discussed in Section 4.3.
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6.2. Sugano Theory

We will show that if f is a Hecke eigenform then Ff is an Hecke eigenform by

using the non-archimedean local theory of Sugano [38, Section 7]. For a prime

p, let F = Qp with the ring of integers Zp. Let n0 ≤ 4 and let S0 ∈ Mn0(F )

be an anisotropic even symmetric matrix of degree n0. For the m × m matrix

Jm =

(
1

...
1

)
, let Gm denote the group of F -valued points of the orthogonal

group of degree 2m + n0, defined by the matrix Q =

(
Jm

S0

Jm

)
. Denote by

Lm := Z2m+n0
p the maximal lattice with respect to Qm and let Km be the maximal

compact open subgroup of Gm defined by the lattice

Km := {g ∈ Gm | gLm = Lm}. (6.2)

Let Hm be Hecke algebra for (Gm,Km) and define C
(r)
m ∈ Hm to be the double

cosets Kmc
(r)
m Km, where

c(r)m := diag(p, . . . , p, 1, . . . 1, p−1, . . . , p−1) ∈ Gm

which is a diagonal matrix whose first r and last r entries are p and p−1 respectively.

By [38, Section 7], {C(r)
m | 1 ≤ r ≤ m} forms generators of the Hecke algebra Hm.

We embed Gi for i ≤ m in Gm as a subgroup by the middle (2i+n0)× (2i+n0)

block. We regard Ki as a subgroup of Km similarly. The invariant measure of Gm

is normalized so that the volume of Ki is one for each i ≤ m.

For a prime p ∤ N , we have n0 = 0 and m = 3. In this case, the lattice L3 is

self-dual. For a non-negative integer k, let

fk,j :=
pj−1(pk−j+1 − 1)(pk−j + 1)

pj − 1
(∀j ∈ Z \ {0}), (6.3)

a special case of [38, 7.11] for n0 = δ = 0. For positive integers k, r, set R
(r)
k :=

Kk/(Kk ∩ c
(r)
k Kk(c

(r)
k )−1), and let |R(r)

k | denote the cardinality of R
(r)
k . We have

|R(r)
k | =

{
Πr

j=1fk,j (1 ≤ r ≤ k);

1 (r = 0).
(6.4)

Following the methods in Section 4 of [21], we get the following theorem (essentially

Theorem 4.11 of [21] for n = 1/2).

Theorem 6.2. Suppose that f is a Hecke eigenform and let λp be the Hecke eigen-

value of f at p < ∞ with p ∤ N . Then the following holds.

i) Ff is a Hecke eigenform.

ii) Let µi be the Hecke eigenvalue with respect to the Hecke operator C
(i)
3 for

1 ≤ i ≤ 3. We have

µ1 = p2(λ2
p − 2) + pf2,1 = p2(λ2

p + p+ p−1);
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µi = |R(i−1)
2 |

(
µ1 −

pi−1 − 1

pi − 1
f3,1

)
, (i = 2, 3).

6.3. The case p | N

When p | N , we have m = 1 and n0 = 4. Hence, the Hecke algebra H1 is generated

by C
(1)
1 which is the double coset K1c

(1)
1 K1 as defined in Section 6.2. Let n(x) ∈ G1

be as defined in Section 2.1 and let (t, g) := diag(t, g, t−1) ∈ G1 for t ∈ Q×
p and

g ∈ G0.

Lemma 6.3.

C
(1)
1 =

⊔
x∈X1

(p, 14)n(x)K1 ⊔
⊔

x∈X3

(1, 14)n(x)K1 ⊔ (p−1, 14)K1

where

X1 =
{
x ∈ p−1O/O

}
, X3 = {x ∈ (O′ −O)/O} .

Proof. This is a direct result of [38, Lemma 7.1] for v = 0 and r = 1. Note, c
(0)
0 = 14

and hence, R
(0)
0 = 1 and u = 14. X

(1)
0,1 and X

(1)
0,3 simplify as above whereas X

(1)
0,2 and

X
(1)
0,4 are empty since r = 1 and v = 0 respectively.

We can now describe the action of C
(1)
1 with the invariant measure dx of G1

normalized so that the volume
∫
K1

dx = 1. Define

(C
(1)
1 · Φ)(g) :=

∫
G1

char
K1c

(1)
1 K1

(x)Φ(gx)dx

for Φ ∈ M(G(A), r). The following proposition derives the action of C
(1)
1 on Fourier

coefficients of Φ.

Proposition 6.4. Let Φ ∈ M(G(A),
√
−1r) be a lift. Then

(C
(1)
1 · Φ)(n(x)ay) =

∑
λ∈O′\{0}

A′
λ(1)y

2K√
−1r(4π

√
QA0

(λ)y)Λ(tλA0(x)),

where

A′
λ(1) =


p2Apλ(1)−Aλ(1) + p2Aλ(1) + p2Ap−1λ(1) if λ ∈ pO′ \ {0};
p2Apλ(1)−Aλ(1) + p2Aλ(1) if λ ∈ O \ pO′;

p2Apλ(1)−Aλ(1) if λ ∈ O′ \ O.

Proof. Since
∫
K1

dx = 1, Lemma 6.3 implies that the action of C
(1)
1 on Φ can be

expressed as

(C
(1)
1 · Φ)(g) =

∑
x∈X1

Φ(g(p, 14)n(x)) +
∑
x∈X3

Φ(gn(x)) + Φ(g(p−1, 14)).
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Here, we are using the fact that Φ ∈ M(G(A),
√
−1r) is right invariant under K1.

Let g = n(x0)ay with x0 ∈ A4 and y ∈ R+. Let a#p := diag(p, 14, p
−1) embedded

diagonally in G(Q). We will abuse the notation to denote (1∞, . . . , (p, 14), . . .) and

(1∞, . . . , n(x), . . .) by (p, 14) and n(x) respectively, where the nontrivial terms are

at the p-th place. Hence,

(C
(1)
1 · Φ)(n(x0)ay) =

∑
x∈X1

Φ(n(x0)ay(p, 14)n(x))

+
∑
x∈X3

Φ(n(x0)ayn(x)) + Φ(n(x0)ay(p
−1, 14)).

Note,

Φ(n(x0)ay(p, 14)n(x))

= Φ(a#p−1n(x0)ay(p, 14)n(x))

= Φ(n(p−1x0)ap−1y(1∞, (p−1, 14), . . . , (1, 14), (p
−1, 14), . . .)n(x))

= Φ(n(p−1x0)ap−1yn(x)(1∞, (p−1, 14), . . . , (1, 14), (p
−1, 14), . . .))

= Φ(n(p−1x0)n(x)ap−1y).

We obtain the last equality as n(x) and ap−1y commute, and

(1∞, (p−1, 14), . . . , (1, 14), (p
−1, 14), . . .) belongs to the maximal compact KfK∞.

By similar computation for other terms, we obtain

(C
(1)
1 · Φ)(n(x0)ay)

=
∑
x∈X1

Φ(n(p−1x0)n(x)ap−1y) +
∑
x∈X3

Φ(n(x0)n(x)ay) + Φ(n(px0)apy)

=
∑

Q4\{0}

Aλ(1)(p
−1y)2Kir(4π

√
QA0

(λ)p−1y)
∑
x∈X1

Λ(tλA0(p
−1x0)p,x)

+
∑

Q4\{0}

Aλ(1)y
2Kir(4π

√
QA0

(λ)y)
∑
x∈X3

Λ(tλA0(x0)p,x)

+
∑

Q4\{0}

Aλ(1)(py)
2Kir(4π

√
QA0

(λ)py)Λ(tλA0(px0)). (6.5)

Here, (p−1x0)p,x is p−1x0,v at all places v ̸= p and is p−1x0,p + x at the place p.

Similarly, (x0)p,x is x0,v at all places v ̸= p and x0,p + x at the place p. Note,∑
x∈X1

Λ(tλA0(p
−1x0)p,x) = Λ(tλA0(p

−1x0))
∑
x∈X1

Λ(tλA0x) (6.6)

with the summation over x ∈ X1 happening only at the p-th place. As Λ is an

additive character being summed over a group X1 =
{
x ∈ p−1O/O

}
, we get

∑
x∈X1

Λ(tλA0x) =

{
p4 p−1λ ∈ O′;

0 otherwise.
(6.7)
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Similarly, ∑
x∈X3

Λ(tλA0((x0)p,x)) = Λ(tλA0(x0))
∑
x∈X3

Λ(tλA0x) (6.8)

being summed over X3 = {x ∈ (O′ −O)/O}. Note,∑
x∈X3

Λ(tλA0x) =
∑

x∈O′/O

Λ(tλA0x)− 1.

Hence, using that Λ is an additive character being summed over a group O′/O, we

get ∑
x∈X3

Λ(tλA0x) =

{
p2 − 1 λ ∈ O;

−1 otherwise.
(6.9)

Therefore, substituting (6.6)–(6.9) in (6.5) we get the formula for A′
λ(1) as de-

fined in the statement of the proposition.

To write the action of the Hecke operator in terms of Fourier coefficients given in

Proposition 4.5, we write Aλ(1) = A(β) where β =
∏
p|N

pupnβ0 as in the proposition.

Note, for λ ∈ O′ and β ∈ O′ the conditions for A′
λ(1) on λ from Proposition 6.4

above translate to conditions on β as follows:

λ ∈ pO′ \ {0} ⇐⇒ up ≥ 1;

λ ∈ O \ pO′ ⇐⇒ up = 0, δp = 1;

λ ∈ O′ \ O ⇐⇒ up = 0, δp = 0.

Then, as

Apλ(1) = A(pβ); Ap−1λ(1) = A(p−1β)

we can rewrite the A′
λ(1) in terms of β as

A′
λ(1) =


p2A(pβ) + (p2 − 1)A(β) + p2A(p−1β) if up ≥ 1;

p2A(pβ) + (p2 − 1)A(β) if up = 0, δp = 1;

p2A(pβ)−A(β) if up = 0, δp = 0.

(6.10)

Let f ∈ S(Γ0(N), r) be a newform with Hecke eigenvalue λp for the operator defined

by the action of the double coset Γ0(N)
[
1
p

]
Γ0(N) at prime p. Assuming it is an

Atkin Lehner eigenform with eigenvalue ϵp, it can be shown that

λp = −ϵp. (6.11)

Using the single coset decomposition

Γ0(N)

[
1

p

]
Γ0(N) =

p−1⊔
b=0

Γ0(N)

[
1 b

p

]
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([19, Lemma 9.14]) we have

p−1∑
b=0

f(
z + b

p
) = λpf(z).

In terms of Fourier coefficients, using (6.11), we get

c(pm) =
λp

p
c(m) =

−ϵp
p

c(m) ∀m ∈ Z.

Therefore,

c(m) =
p

−εp
c(pm) ∀m ∈ Z,

and

c
( −QA0(β)

ptp−1
∏
ℓ|N
ℓ ̸=p

ℓtℓ−1d2
)∏
ℓ|N
ℓ ̸=p

(−εℓ)
tℓ−1(−εp)

tp−1

=

(
p

−εp

)tp

c
( −QA0

(β)

p−1
∏
ℓ|N
ℓ̸=p

ℓtℓ−1d2
)∏
ℓ|N
ℓ ̸=p

(−εℓ)
tℓ−1(−ϵp)

tp−1

=ptpc
( −QA0

(β)

p−1
∏
ℓ|N
ℓ ̸=p

ℓtℓ−1d2
)∏
ℓ|N
ℓ ̸=p

(−εℓ)
tℓ−1(−ϵp)

−1. (6.12)

Hence, as (−ϵp)
−1 = −ϵp, we have

2uℓ+δℓ∑
tℓ=0

∑
d|n

c
( −QA0

(β)∏
ℓ|N

ℓtℓ−1d2
)∏
ℓ|N

(−εℓ)
tℓ−1

=
p2up+δp+1 − 1

p− 1

∑
d|n

c
( −QA0

(β)

p−1
∏
ℓ|N
ℓ ̸=p

ℓtℓ−1d2
)∏
ℓ|N
ℓ̸=p

(−εℓ)
tℓ−1(−ϵp). (6.13)

Theorem 6.5. Let f ∈ S(Γ0(N), r) be a newform and eigenfunction of the Atkin

Lehner involution with eigenvalue ϵp at each p|N . Let Ff be the lift of f defined in

(6.1). Then Ff is a Hecke eigenform with

C
(1)
1 · Ff = (p3 + p2 + p− 1)Ff .

Proof. We shall prove the Hecke eigenvalue for the most general case of β with up ≥
1. The proof for the cases up = 0 with δp ∈ {0, 1} is similar and follows immediately
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after substituting for up and δp. Using (6.13) and QA0(aβ) = a2QA0(β), we have

p2A(pβ) = p3
√

QA0
(β)
∑
ℓ|N
ℓ ̸=p

2uℓ+δℓ∑
tℓ=0

p2up+δp+3 − 1

p− 1

×
∑
d|n

c
( −p2QA0

(β)

p−1
∏
ℓ|N
ℓ ̸=p

ℓtℓ−1d2
)∏
ℓ|N
ℓ ̸=p

(−εℓ)
tℓ−1(−ϵp);

A(β) =
√

QA0
(β)
∑
ℓ|N
ℓ ̸=p

2uℓ+δℓ∑
tℓ=0

p2up+δp+1 − 1

p− 1

×
∑
d|n

c
( −QA0

(β)

p−1
∏
ℓ|N
ℓ ̸=p

ℓtℓ−1d2
)∏
ℓ|N
ℓ ̸=p

(−εℓ)
tℓ−1(−ϵp);

p2A(p−1β) = p
√

QA0(β)
∑
ℓ|N
ℓ ̸=p

2uℓ+δℓ∑
tℓ=0

p2up+δp−1 − 1

p− 1

×
∑
d|n

c
( −p−2QA0(β)

p−1
∏
ℓ|N
ℓ ̸=p

ℓtℓ−1d2
)∏
ℓ|N
ℓ ̸=p

(−εℓ)
tℓ−1(−ϵp).

Note, A(p−1β) = 0 if up = 0. By (6.12) and the fact that (−ϵp)
2 = 1, we have

p2A(pβ) + (p2 − 1)A(β) + p2A(p−1β)

= p
√

QA0
(β)
∑
ℓ|N
ℓ ̸=p

2uℓ+δℓ∑
tℓ=0

p2up+δp+3 − 1

p− 1

∑
d|n

c
( −QA0

(β)

p−1
∏
ℓ|N
ℓ ̸=p

ℓtℓ−1d2
)∏
ℓ|N
ℓ ̸=p

(−εℓ)
tℓ−1(−ϵp)

+ (p2 − 1)
√

QA0
(β)
∑
ℓ|N
ℓ ̸=p

2uℓ+δℓ∑
tℓ=0

p2up+δp+1 − 1

p− 1

×
∑
d|n

c
( −QA0(β)

p−1
∏
ℓ|N
ℓ ̸=p

ℓtℓ−1d2
)
×
∏
ℓ|N
ℓ ̸=p

(−εℓ)
tℓ−1(−ϵp)

+ p3
√

QA0(β)
∑
ℓ|N
ℓ ̸=p

2uℓ+δℓ∑
tℓ=0

p2up+δp−1 − 1

p− 1

∑
d|n

c
( QA0

(β)

p−1
∏
ℓ|N
ℓ ̸=p

ℓtℓ−1d2
)∏
ℓ|N
ℓ ̸=p

(−εℓ)
tℓ−1(−ϵp).
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Hence,

p2A(pβ) + (p2 − 1)A(β) + p2A(p−1β)

=
√
QA0

(β)
∑
ℓ|N
ℓ̸=p

2uℓ+δℓ∑
tℓ=0

( (p(p2up+δp+3 − 1)

p− 1
+

(p2 − 1)(p2up+δp+1 − 1)

p− 1

+
p3(p2up+δp−1 − 1))

p− 1

)∑
d|n

c
( −QA0(β)

p−1
∏
ℓ|N
ℓ ̸=p

ℓtℓ−1d2
)∏
ℓ|N
ℓ ̸=p

(−εℓ)
tℓ−1(−ϵp)

= (p3 + p2 + p− 1)
√

QA0
(β)
∑
ℓ|N
ℓ ̸=p

2uℓ+δℓ∑
tℓ=0

p2up+δp+1 − 1

p− 1

×
∑
d|n

c
( −QA0

(β)

p−1
∏
ℓ|N
ℓ ̸=p

ℓtℓ−1d2
)∏
ℓ|N
ℓ ̸=p

(−εℓ)
tℓ−1(−ϵp)

= (p3 + p2 + p− 1)A(β).

The result now follows from Proposition 6.4 and equation (6.10).

7. Non-vanishing of the lift

In this section, we will obtain the non-vanishing of the map f → Ff constructed

in Section 4. Let us start by observing that the proof of Lemma 4.5 of [23] can be

used to conclude that there exists M > 0 such that the Fourier coefficient c(−M)

of f is non-zero. If f is a Hecke eigenform, then this implies that c(−1) ̸= 0. Using

the explicit formula (4.5) for the Fourier coefficients for Ff , we can see that in this

case we get A(1) ̸= 0. Hence, the map f → Ff is injective when restricted to Hecke

eigenforms f . We will now prove the injectivity for all f .

Consider a basis of Hecke eigenforms {f1, · · · , fk} of S(Γ0(N), r). Since this is

a finite set, we can find a prime p ∤ N such that the Hecke eigenvalues λ
(i)
p of fi for

i = 1, · · · k satisfy |λ(i)
p | ̸= |λ(j)

p | for all i ̸= j. This follows from Corollary 4.1.3 of

[32]. Let F1, · · · , Fk be the lifts of f1, · · · , fk. By Theorem 6.2, we know that Fi are

Hecke eigenforms with eigenvalues µp,1,i = p2
(
(λ

(i)
p )2 + p + p−1

)
. Because of the

choice of p, we again see that µp,1,i ̸= µp,1,j for all i ̸= j.

Theorem 7.1. The map f → Ff is an injective linear map on S(Γ0(N), r).

Proof. Let notations be as above the statement of the theorem. Suppose there

exist complex numbers c1, · · · , ck such that c1F1 + · · · + ckFk = 0. Applying the
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Hecke operator C
(1)
3,p k − 1 times, we get

c1F1 + c2F2 + · · ·+ ckFk = 0

µp,1,1c1F1 + µp,1,2c2F2 + · · ·+ µp,1,kckFk = 0

µ2
p,1,1c1F1 + µ2

p,1,2c2F2 + · · ·+ µ2
p,1,kckFk = 0

· · · = · · ·
µk−1
p,1,1c1F1 + µk−1

p,1,2c2F2 + · · ·+ µk−1
p,1,kckFk = 0.

This can be rewritten as
1 1 · · · 1

µp,1,1 µp,1,2 · · · µp,1,k

µ2
p,1,1 µ2

p,1,2 · · · µ2
p,1,k

· · · · · · · · · · · ·
µk−1
p,1,1 µk−1

p,1,2 · · · µk−1
p,1,k



c1F1

c2F2

· · ·
· · ·
ckFk

 = 0.

The matrix on the left hand side is a Vandermonde matrix, with determinant∏
1≤i<j≤k

(µp,1,i − µp,1,j) ̸= 0,

since all the µp,1,i’s are distinct. Hence the matrix is invertible, which implies that

ciFi = 0 for all i. But all the Fi are non-zero, so all the ci = 0. This completes the

proof of the theorem.

Remark 7.2. Here, without assuming that f is a Hecke eigenform, we cannot get

the non-vanishing as in [23] only using the explicit formula (4.5) for the Fourier

coefficients of Ff . The reason is that even though we can find an integer M > 0

such that c(−M) ̸= 0, there is no guarantee that, for an arbitrary maximal order

O, there exists β ∈ O′ such that QA0
(β) = M .

8. CAP representation associated to the lift

Assume that f ∈ S(Γ0(N), r) is a newform, and let Ff ∈ M(G(A),
√
−1r) be the

corresponding lift defined in (6.1). Let πF be the representation of G(A) generated
by Ff .

8.1. Local components of the representation

8.1.1. The archimedean component

Let

N∞ := {n(x) | x ∈ R4}, A∞ := {ay | y ∈ R+}

for n(x) and ay as defined in Section 4.1. Let δs : A∞ → C× be a quasi-

character given by δs(y) = ys for a parameter s ∈ C. We can trivially extend

δs to the parabolic subgroup P∞ with Langlands decomposition P∞ = N∞A∞M∞
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for M∞ :=
{(

1
m

1

)∣∣∣m ∈ H(R)
}
. We define the normalized parabolic induction

induced from δs by IG∞
P∞

(δs). Proposition 5.5 of [21] for N = 4 gives us

Proposition 8.1. The archimedean component of πF is isomorphic to IG∞
P∞

(δ√−1r)

as admissible G∞ module, and irreducible. If r is real, namely, f satisfies the Selberg

conjecture on the minimal eigenvalue of the hyperbolic Laplacian, πF is tempered at

the archimedean place.

Using Theorem 3.1 of [24] and Proposition 6.1, we see that πF is irreducible.

Since Ff is a cusp form, we can conclude that πF is an irreducible, cuspidal repre-

sentation of G(A). Hence, we can decompose πF = ⊗′
vπv, where πv is an irreducible,

admissible representation of G(Qv). We have obtained the description of π∞ above.

Next we will describe πp for finite primes p.

8.1.2. Non-archimedean component: p ∤ N case

Let p be a prime with p ∤ N . Let χ1, χ2, χ3 be unramified characters of Q×
p . We get

a character χ of the split torus of G(Qp) via

diag(a1, a2, a3, a
−1
3 , a−1

2 , a−1
1 ) → χ1(a1)χ2(a2)χ2(a3).

Extend this to a character of the minimal parabolic subgroup of G(Qp) by setting it

to be trivial on the unipotent radical. By unramified principal series representation

of G(Qp) we mean the normalized parabolic induction I(χ) of G(Qp) induced from

χ, the character of the minimal parabolic subgroup.

The argument of the proof of [21, Theorem 5.6] works also for our setting. From

Theorem 6.2 we thus deduce the following:

Proposition 8.2. For primes p ∤ N , the local component πp of πF is the spherical

constituent of the unramified principal series representation I(χ) of G(Qp) where

the character χ corresponds to the three unramified characters χ1, χ2, χ3 given by

χ1(ϖp) =

λp +
√

λ2
p − 4

2

2

, χ2(ϖp) = p, χ3(ϖp) = 1.

Here, ϖp is an uniformizer in Qp. Hence, πp is non-tempered for every p ∤ N .

8.1.3. Non-archimedean component: p|N case

Let p be a prime with p|N . For an unramified character χ of Q×
p , we get a character

of the torus of G(Qp) via

diag(y, 1, 1, 1, 1, y−1) → χ(y).

We can extend this to a character of the maximal parabolic subgroup P by setting

it to be trivial on the unipotent radical. The modulus character is given by

δP (ayn(x)) = |y|4.
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Define the normalized unramified principal series I(χ) consisting of all smooth func-

tions f : G(Qp) → C satisfying

f(ayn(x)g) = |y|2χ(y)f(g) for all y ∈ Q×
p , x ∈ Q4

p, g ∈ G(Qp).

If f1 is an unramified vector in I(χ), then the Hecke operator C
(1)
1 acts on f1 by a

constant. To obtain the constant, using Lemma 6.3, we see that(
C

(1)
1 f1

)
(1) =

∫
G(Qp)

char
K1c

(1)
1 K1

(x)f1(x)dx

=
∑
x∈X1

f1(apn(x)) +
∑
x∈X1

f1(n(x)) + f1(ap−1)

= p4|p|2χ(p)f1(1) + (p2 − 1)f1(1) + |p−1|2χ(p−1)f1(1)

=
(
p2χ(p) + p2 − 1 + p2χ(p−1)

)
f1(1). (8.1)

Proposition 8.3. Let p|N . The local representation πp is the spherical constituent

of the unramified principal series I(χ) with χ(ϖp) = p. The representation πp is

non-tempered.

Proof. Ff is right invariant under the maximal compact Kp. Hence, πp is the

spherical constituent of an unramified principal series. Comparing (8.1) with the

Hecke eigenvalue from Theorem 6.5 we get

p3 + p2 + p− 1 = p2χ(ϖp) + p2 − 1 + p2χ−1(ϖp)

implying

χ(ϖp) = p or p−1.

In view of the conjugation by the Weyl group we can take χ so that χ(ϖp) = p.

Let us show that πp is non-tempered. We remark that [21, Theorem 5.2] is not

applicable to this case since the assumption “m ≥ 2” does not hold. If πp is tem-

pered the matrix coefficient ⟨πp(g)v0, v0⟩ with a spherical vector v0 should belong

to L2+ϵ(G(Qp) for any ϵ > 0. However, calculate the integral of |⟨πp(g)v0, v0⟩|2+ϵ

over the open domain of G(Qp) as follows:⊔
m∈Z

(pm, 14)K1.

This yields a divergent series
∑

m∈Z p
−m(2+ϵ)|⟨v0, v0⟩|2+ϵ and hence ⟨πp(g)v0, v0⟩ is

not 2 + ϵ-integrable for any ϵ > 0, as required.

8.2. Cuspidal representation generated by Ff and its CAP property

Following the description of the local components, we can now state the result for

the explicit determination of the cuspidal representation generated by Ff .

Theorem 8.4. Let f be a newform in S(Γ0(N), r) and let πF be the cuspidal

representation generated by Ff . Then,
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i) πF is irreducible and decomposes into the restricted tensor product πF =

⊗′
v≤∞πv of irreducible admissible representations πv of G(Qv).

ii) For v = p < ∞, if p ∤ N then πp is the spherical constituent of the unrami-

fied principal series representation of Gp with the Satake parameters

diag


λp +

√
λ2
p − 4

2

2

, p, 1, 1, p−1,

λp +
√
λ2
p − 4

2

−2 .

iii) For v = p < ∞, if p | N then πp is the spherical constituent of the parabolic

induction I(χ) of G(Qp) defined by

χ(p) = p.

iv) For every finite prime p, πp is non-tempered. Suppose that the Selberg con-

jecture holds for f , namely r is a real number for the Laplace eigenvalue

for f . Then π∞ is tempered.

Proof. This follows from Proposition 8.1, Proposition 8.2 and Proposition 8.3.

We now review the definition of a CAP representation from [23, Definition 6.6].

Definition 8.5. Let G1 and G2 be two reductive algebraic groups over a number

field F such that G1,v ≃ G2,v for almost all places v, where Gi,v = Gi(Fv) (i = 1, 2)

is the group of Fv-points of Gi for the local field Fv at v. Let P2 be a parabolic

subgroup of G2 with Levi decomposition P2 = M2N2. An irreducible cuspidal auto-

morphic representation π = ⊗′
vπv of G1(A) is called cuspidal associated to parabolic

(CAP) P2, if there exists an irreducible cuspidal automorphic representation σ of

M2 such that πv ≃ π′
v for almost all places v, where π′ = ⊗′

vπ
′
v is an irreducible

constituent of Ind
G2(A)
P2(A) (σ).

For our case G1 = G = O(1, 5) and G2 = O(3, 3). We have G1,p = G2,p for all

p ∤ N . Let σ be a cuspidal representation of GL2 generated by a Maass cusp form f

with the trivial central character. Assume that f is a newform. We want to regard

the representation |det |−1/2
A σ×| det |1/2A σ of GL2(A)×GL2(A) (cf.[23, Section 6.2])

as the representation of A××O(2, 2)(A), which is isomorphic to a Levi subgroup of a

maximal parabolic subgroup P (A) of O(3, 3)(A). Recall that our previous work [23]

introduced the parabolic induction from the representation |det |−1/2
A σ× | det |1/2A σ

of GL2(A) × GL2(A) to discuss the CAP property of our lifting for the case of

dB = 2 in the setting of GL2 over B. In the present setting we consider the parabolic

induction from the aforementioned representation of A× × O(2, 2)(A) instead and

can show that πF is a CAP representation attached to this parabolic induction.

To see this we start with recalling the following two isomorphisms (cf. Section

2.3)

GL2 ×GL2/{(z, z) | z ∈ GL1} ≃ GSO(2, 2), GO(2, 2) = GSO(2, 2)⋊ ⟨t⟩.
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We now note that the representation |det |−1/2
A σ × | det |1/2A σ of GL2(A)×GL2(A)

can be regarded as the representation of GSO(2, 2)(A) since the central character of
σ is trivial. We construct a representation of GO(2, 2)(A) by considering its induced

representation from GSO(2, 2)(A) to GO(2, 2)(A). Furthermore consider the pull-

back of the representation of GO(2, 2)(A) to A× × O(2, 2)(A) via the surjection

A× ×O(2, 2)(A) → GO(2, 2)(A). We denote the resulting representation simply by

σ and introduce the normalized parabolic induction Ind
O(3,3)(A)
P (A) σ, where P is the

maximal parabolic subgroup with Levi subgroup isomorphic to GL(1)×O(2, 2) and

the abelian unipotent radical. Then we have the following:

Proposition 8.6. Let πF be as above and recall that we have assumed that the

Maass cusp form f is a newform. The cuspidal representation πF is CAP to the

parabolic induction Ind
O(3,3)(A)
P (A) σ.

Proof. We first review the accidental isomorphism (GL4×GL1)/{(z ·14, z−2) | z ∈
GL1} ≃ GSO(3, 3) (see Section 2.3). The restriction of this isomorphism to the

GL4-factor gives rise to the isomorphism of the maximal split tori of the GL4-factor

and SO(3, 3) induced by

diag(x1, x2, x3, x4) 7→ diag(x1x2, x1x4, x1x3, x2x4, x2x3, x3x4)

for xi ∈ GL1, 1 ≤ i ≤ 4, where note that SO(3, 3) = {(g, z) ∈ GSO(3, 3) |
det(g)z2 = 1} (cf. [5, Section 3]). In [23, Section 6.1 (6.6), Theorem 6.7], for the

GL4-setting, we have diag(a1, a2, a3, a4) with

a1 = p1/2
λp +

√
λ2
p − 4

2
, a2 = p1/2

λp −
√
λ2
p − 4

2
, a3 = p−1/2

λp +
√
λ2
p − 4

2
,

a4 = p−1/2
λp −

√
λ2
p − 4

2

as the Satake parameter of the parabolic induction from |det |−1/2
A σ×| det |1/2A σ at a

prime p ∤ N . Now note that O(3, 3) and SO(3, 3) has the same maximal split torus.

In view of the isomorphism of the split tori for PGL4 and O(3, 3) the corresponding

Satake parameter for the O(3, 3)-setting is

diag(p, 1,

λp +
√
λ2
p − 4

2

2

,

λp +
√

λ2
p − 4

2

−2

, 1, p−1),

which is conjugate to the Satake parameter as in Theorem 8.4 under the action of

the Weyl group.

We now prove that the parabolic induction Ind
O(3,3)(A)
P (A) σ has the Satake pa-

rameter above. We note that by the accidental isomorphism (GL2 ×GL2)/{(z, z) |
z ∈ GL1} ≃ GSO(2, 2), the Satake parameter diag(a1, a2, a3, a4) = diag(a1, a2) ×
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diag(a3, a4) is mapped to that of GSO(2, 2) given by

diag(
a1
a3

,
a1
a4

,
a2
a3

,
a2
a4

) = diag(p, p

λp +
√
λ2
p − 4

2

2

, p

λp +
√
λ2
p − 4

2

−2

, p).

In addition, we remark that diag(p, p, p, p) corresponds to the character of the simil-

itude factor of GSO(2, 2)(Qp). We thereby see that Ind
O(3,3)(A)
P (A) σ has the desired

Satake parameter at p ∤ N since the representation σ, viewed as that of the Levi

subgroup of O(3, 3)(A), has the same Satake parameter.

To conclude the proof, as has been pointed out in [21, Section 5.1], we remark

that it is valid for the non-connected group O(3, 3) that conjugacy classes of the

Satake parameters by the Weyl group classify irreducible unramified principal series,

up to isomorphisms. We therefore see that πF is nearly equivalent to an irreducible

constituent of Ind
O(3,3)(A)
P (A) σ, as required.

8.3. Global standard L-function for Ff

We define the standard L-function of the orthogonal group G, following Sugano [38,

Section 7, (7,6)]. The local factors for places p ∤ dB are well known. We find them

in [38, Section 7, (7,6)]. For places p|dB , the case of (n0, ∂) = (4, 2) in [38, Section

7 (7.6)] is valid. We define the standard L-function by the Euler product over all

finite primes. Putting the local datum of Theorem 8.4 (ii) and (iii) together, we

have the following:

Proposition 8.7. Suppose that a Maass cusp form f is a newform in S(Γ0(N), r)

and recall that σ denotes the cuspidal representation of GL2(A) generated by f . Let

Π be the irreducible constituent of Ind
GL4(A)
P2,2(A)(|det |

−1/2
A σ × | det |1/2A σ) with Satake

parameters as in the proof of Proposition 8.6, where P2,2 is the parabolic subgroup of

GL4 with Levi part GL2 ×GL2. By L(Ff , std, s) (respectively L(Π,∧, s)) we denote

the standard L-function for the lift Ff (respectively exterior square L-function of

Π). We have

L(Ff , std, s) = L(Π,∧, s) = L(sym2(f), s)ζ(s− 1)ζ(s)ζ(s+ 1),

where the Riemann zeta function ζ(s) is defined by the Euler product over all finite

primes.

Proof. We explain only how to get the equality for the local factors for p|N since

the local factors at p ∤ N are calculated in a formal manner by using the explicit

formula for the Satake parameters of Ff and Π, where see the proof of Proposition

8.6 for the Satake parameter of Π.

According to [38, Section 7 (7.6)] the local factors of L(Ff , std, s) are written as

(1− χ(p)p−s)−1(1− χ(p)−1p−s)−1(1− p−s)−1(1− p−s−1)−1.

Now note that, for p|N , the local component of the cuspidal representation gener-

ated by f is a (twisted) Steinberg representation. From [6, p485] we then know that
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the local symmetric square L-function Lp(sym
2(f), s) is (1 − p−(s+1))−1 for p|N .

We thereby obtain the local factors of L(Ff , std, s) at p|N .

We are left with the proof of L(Ff , std, s) = L(Π,∧, s) at p|N . We use the recent

result by Y. Jo [17, Theorem 5.7] to see that the local factor of L(Π,∧, s) at p|N
admits a decomposition into the product

Lp(σ,∧, s+ 1)Lp(σ,∧, s− 1)Lp(σ × σ, s)

of the local exterior square L-function and the local Rankin-Selberg L-function for

σ. We can verify that the local exterior L-functions of σ at finite primes are nothing

but the local Riemann zeta function (cf. [16, Proposition 4.1]). From [6, (1.4.3)] we

deduce Lp(σ × σ, s) = ζp(s)ζp(s+ 1). As a result we obtain the desired coincidence

L(Ff , std, s) = L(Π,∧, s).

Remark 8.8. The above coincidence of the two L-functions is expected in the

framework of the Langlands L-functions (for instance see [5, Section 4]). We remark

that our example is given for non-generic representations while the case of generic

representations is known to be proved by Shahidi’s theory [35, Theorem 3.5] (see

[5, Lemma 4.1]).
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